Водяной насос,без электричества своими руками
Водяной насос,без электричества
Никакого преувеличения в оглавлении нет. В самом деле, чинно проплывающие по рекам и каналам буксиры а также теплоходы, быстрые суда на подводных крыльях способны поливать прибрежные сады и огороды, при том даже помимо ведома капитанов. Волновой насос, изобретенный столичным инженером П. Радченко, необычно удобен для тех, кто проживает вместе с оживленными водными магистралями, такими, как. канал имени Москвы. Ну а как же будет, в случае когда по соседству, скажем, только пруд, маленькая речушка либо пруд, где судоходства и в помине нет? Не беспокойтесь: ведь в этом месте поверхность воды так же нечасто бывает спокойной. Поглядите, как, например болтаются рядом берега оторвавшиеся от плота древа-гиганты, трутся о причал тяжело груженные баржи, и все это тогда-то, в случае когда, казалось бы, и ветра практически нет никакого.
Механизм насоса последующее. Отрезок латунной гофрированной трубы 1-м концом подвешивают к кронштейну вбитой в дно сваи, иным фиксируют до плавающему в реке бревну. С обеих сторон он закрыт втулками вместе с клапанами.
Набегающая волна поднимает и опускает бревно, сжимая и разжимая межелезнуюрубу-гармошку. Следуета влить туда воду, и клапаны нев тот же вмиг придут в действие, насос заработает.
Невзирая на несложность конструкции, она даёт напор более 4 атм. а также производительность 25—100 тонн воды в сутки — при подходящей погоде, разумеется. А так как для того, чтобы волны раскачали бревно, хватает ветра мощностью 2 метра. в секунду, то буквально водоподъёмник трудится с очень малыми перерывами.
В случае когда применяется гофрированная латунная труба 56 X Х0,8 мм, бревно должно весить 60—80 кг. Дабы подъемник не вышел из строя при слишком сильном волнении, к стойке фиксируют направляющую вместе с ограничителем в форме кольца. Пропущенный через него болт оканчивается в бревне под накладной сферической головкой. Такое даёт возможность бревну немного-чуть поворачиваться в горизонтальной плоскости, что исключает способность сотворения ненадобного крутящего момента. Втулки ввинчивают в наконечники, впаянные в концы трубы. Клапаны, простые, с резиновыми седлами. В рабочем положении труба должна быть натянута под весом бревна.
Источник: http://www.umeltsi.ru/dacha/75-vodjanojj-nasosbez-elektrichestva.html
Как сделать насос для воды своими руками: разбираем 13 лучших вариантов самоделок
Вода на дачном участке требуется не только владельцам для соблюдения санитарно-гигиенических норм. Она необходима для полива растений, ухода за территорией и питомцами, освежения и купания в знойную летнюю пору. Согласитесь, что весь требующийся объем тяжело поднимать из источника вручную ведрами.
Однако есть способ облегчения нелегкой участи дачников – это самодельный насос для воды. Даже если нет средств для покупки насосного оборудования, вы можете стать счастливым обладателем полезного технического устройства. Чтобы его соорудить иногда достаточно буквально одной силы мысли.
Мы собрали и систематизировали для вас ценную информацию об изготовлении практически бесплатных самоделок. Представленные к рассмотрению модели прошли опробование на деле и заслуженно получили признание хозяев. Доскональное описание технологии изготовления дополнено схемами, фото- и видеоматериалами.
Конструкция #1 – насос для перелива жидкости
Этот насос скорее всего окажется самым простым и самым дешевым, ведь исходные материалы буквально бросовы, т.е. не стоят вообще ничего.
Для реализации задумки по его сборке необходимы следующие материалы:
- пластиковая бутылка с пробкой;
- пластиковая бутылка без пробки;
- кусочек пластиковой трубы подходящего диаметра;
- изливной шланг.
Для начала, необходимо изготовить лепестковый клапан.
Вынимаем прокладку из крышки пластиковой бутылки. Обрезаем по кругу, чтобы прокладка в диаметре стала меньше горлышка бутылки. При этом, нужно оставить нетронутым узкий сектор, около 15-20 градусов.
В центре крышки от пластиковой бутылки сверлим отверстие, примерно 8 мм. Вставляем прокладку и завинчиваем обрезанное горлышко.
В готовый клапан вставляем пластиковую трубу. Со второй пластиковой бутылки отрезаем верх. Должно получиться что-то похожее на заборную воронку. Закрепляем ее поверх пластиковой трубы.
На второй конец пластиковой трубы надеваем изливной шланг. Самый простой самодельный насос для откачки воды готов.
Резким движением руки вверх-вниз заставляем жидкость подниматься по пластиковой трубе до излива. Дальше жидкость потечет самотеком.
Есть еще другие варианты:
Для использования поршневого насоса поверхностного или погружного типа необходим трубчатый колодец – скважина, которую также можно самостоятельно пробить как абиссинский колодец или пробурить.
Конструкция #2 – ручная помпа с прямым изливом
Очень простое устройство для перекачивания воды из бочки, шахтного колодца. Достоинства такой конструкции: быстрота сборки, копеечная стоимость.
- труба ПВХ д.50мм – 1шт.;
- муфта ПВХ д.50мм – 1шт;
- труба ППР д.24мм – 1шт.;
- отвод ППР д.24 – 1шт;
- заглушка ПВХ д.50мм – 2шт.;
- кусочек резины д.50мм, толщиной 3-4мм – 1шт;
- обратный клапан д.15мм – 1шт.;
- пустой баллон от силикона 330мл – 1шт;
- стяжной винтовой хомут – 1шт;
- винт-гайка или заклепка – 1шт;
- накидная гайка д.15 – 1шт.
Сборку всей конструкции начинаем с изготовления обратного клапана.
Сооружение обратного клапана. Готовим обратный клапан из заглушки Ø 50мм. Сверлим несколько дырок по периметру заглушки Ø 5-6мм. В центре сверлим отверстие подходящего диаметра для пары винт-гайка или заклепки.
С внутренней стороны заглушки накладываем резиновый диск Ø 50мм. Диск не должен затирать о стенки заглушки, но должен закрывать все просверленные отверстия. В центре стягиваем винтом-гайкой или заклепкой, шуруп не подойдет. Если возникли трудности с материалами или изготовлением, можно заменить на обратный клапан заводской готовности.
Что собой представляет обратный клапан заводского изготовления, применяемый для работы насосной станции, подробно описано в рекомендуемой нами статье.
Подготовка гильзы насоса. Длина гильзы должна быть соразмерной глубине колодца или емкости с водой. Обрезаем канализационную трубу ПВХ Ø 50мм нужной длины, с узкого конца. В раструб трубы вставляем только что изготовленный клапан. Для надежности крепим с двух сторон саморезами.
Для второго конца готовим заглушку с предварительно просверленным отверстием Ø 25мм. Это отверстие в заглушке делается по диаметру трубы ППР Ø 24. Большой точности не требуется, заглушка служит опорой скольжения.
Порядок сборки поршня. У пустого баллона от силикона отрезаем носик. Далее необходимо нагреть баллон и вставить в ПВХ гильзу так, чтобы диаметр баллона точно соответствовал диаметру гильзы. Насаживаем баллончик от силикона на клапан с обратной стороны стрелки (стрелка на обратном клапане показывает направление движения воды).
Лишний баллон отрезаем. Закрепляем накидной гайкой д.15.
Устройство штока насоса. Длина штока должна быть больше длины гильзы на 50-60 см. Нужно разогреть один конец штока и вставить обратный клапан. Стрелка на обратном клапане должна показывать внутрь штока. Пока труба окончательно не остыла, стягиваем винтовым хомутом.
Окончательная сборка помпы. В гильзу вставляем шток, сверху через муфту крепим заглушку (опора скольжения). В довершение, на конец трубы штока крепим отвод ППР 24мм. Осталось подсоединить шланг и можно качать воду.
Отвод служит опорой для руки. Для удобства можно взять тройник и одну сторону у него заглушить.
Конструкция #3 – ручная помпа с боковым изливом
В предыдущей конструкции есть один, но существенный недостаток. Излив двигается вместе со штоком. Эта конструкция не намного сложнее, но гораздо удобнее.
Гильзу необходимо усовершенствовать. Добавить в конструкцию тройник ПВХ д. 50мм с отводом 35 градусов. Тройник необходимо вставить в верхнюю часть гильзы. В штоке, около поршня, сверлим несколько дырок большого диаметра, главное, не перестараться и не нарушить жесткость всей конструкции.
Теперь вода начнет изливаться в пространство между штоком и гильзой. При движении поршня вверх вода начнет поступать в излив.
Конструкция #4 – поршневой скважинный насос
Эта конструкция насоса подходит для скважин не более 8-ми метров. Принцип действия основан на разрежении, создаваемом поршнем внутри цилиндра. Полезная самоделка способна стать отличной альтернативой насосному оборудованию заводского производства, поможет решить проблемы добычи воды для обслуживания дачного участка.
- труба металлическая д.100мм., длина 1м.;
- резина;
- поршень;
- два клапана.
Производительность насоса напрямую зависит от герметичности всей конструкции.
Подробное описание процесса изготовления поршневого насоса для использования на дачном участке вы найдете в одной из популярных статей нашего сайта.
Шаг #1: Устройство гильзы агрегата
Для изготовления гильзы насоса необходимо обратить внимание на внутреннюю поверхность, она должна быть ровной и гладкой. Хорошим вариантом может стать гильза от двигателя грузового автомобиля.
Снизу к гильзе нужно приварить стальное днище по диаметру оголовка скважины. В центре днища устанавливается либо лепестковый клапан, либо заводской.
Для верха гильзы изготавливается крышка, хотя эта деталь больше эстетическая, можно обойтись и без нее. Нужно обратить внимание на то, что отверстие для штока поршня делается щелевидным.
Шаг #2: Сооружение поршня насоса
Для поршня необходимо взять 2 металлических диска. Между ними проложить не очень толстую резину 1см, немногим большего диаметра чем диски. Далее диски стягиваем болтами.
В результате резиновый диск зажмется и должен получиться сэндвич из металла и резины. Смысл в том, чтобы по краю поршня создать резиновый обод, который сформирует необходимое уплотнение поршень-гильза.
Осталось установить клапан и приварить ухо для штока.
Шаг #3. Изготовление лепесткового клапана из резины
Лепестковый клапан состоит из резинового диска не очень большой толщины. Размер диска должен быть больше впускных отверстий. По центу резины сверлится отверстие. Через это отверстие и прижимную шайбу резиновый диск крепится поверх впускных отверстий.
При засасывании края резины приподнимаются, и вода начнет поступать. При обратном ходе создается прижимное давление: резина надежно перекрывает впускные отверстия.
Шаг #4: Окончательная сборка и установка
Желательно на оголовке скважины и в днище гильзы насоса нарезать резьбу. Резьба позволит легко снимать насос для обслуживания и сделает установку герметичной.
Устанавливаем верхнюю крышку и крепим ручку к штоку. Для комфортной работы конец ручки можно обмотать изолентой или веревкой, прокладывая виток к витку.
Ограничение по глубине скважины связано с теоретической невозможностью создать разряжение более 1 атмосферы. Если скважина глубже, придется модифицировать насос до глубинного.
Конструкция #5 – глубинный поршневой насос
Отличие от обычного поршневого насоса состоит в том, что гильзу насоса необходимо установить на глубину скважины. При этом длина штока получается более 10 метров.
Решить эту проблему можно двумя способами:
- Изготовить шток из более легкого материала, например, алюминиевой трубы.
- Изготовить шток из цепи.
Для второго варианта необходимы пояснения. В этом случае шток получается не жесткий. Днище гильзы соединяют с днищем поршня возвратной пружиной.
Конструкция #6 – американский или спиральный тип
Спиральный насос использует энергию течения реки. Для работы должны быть соблюдены минимальные требования: глубина – не менее 30см, скорость течения – не менее 1,5 м/с.
Вариант 1
- гибкий шланг д.50мм;
- несколько хомутов по диаметру шланга;
- заборник – ПВХ труба д. 150мм;
- колесо;
- трубный редуктор.
Главной трудностью в таком насосе является трубный редуктор. Такой можно найти в списанных ассенизаторских машинах или раздобыть с заводского оборудования.
Гибкий шлаг с помощью хомутов крепиться к колесу по спирали. На один конец присоединяется заборник из ПВХ трубы д. 150мм. Второй конец шланга надевается на трубный редуктор.
Вода забирается водозаборником и двигается по спирали, создавая необходимое давление в системе. Высота подъема зависит от скорости течения и глубины погружения заборника.
Вариант 2
- гибкий шланг д.12мм (5);
- бочка пластиковая д.50см, длина 90см (7);
- пенопласт (4);
- крыльчатка (3);
- втулочная муфта (2);
В дне бочки вырезаем заборное отверстие. Внутри бочки необходимо плотно по спирали уложить шланг и подсоединить к втулочной муфте.
Для придания плавучести внутрь бочки необходимо вклеить поплавки из пенопласта. В довершении прикрутить крыльчатку.
Для такого варианта конструкции сливной шланг должен быть 25 мм. в диаметре.
Конструкция #7 – насос на энергии волн
Как видно из названия, такие насосы используют энергию волн. Конечно, на озерах не такие уж большие волны, но зато насос работает круглосуточно и способен за сутки накачать до 20 кубометров.
Вариант 1
- поплавок;
- гофрированная труба;
- два клапана;
- мачта крепления.
Поплавок представляет собой трубу, бревно, подбирается в зависимости от жесткости гофрированной трубы, опытным путем.
В гофрированную трубу монтируются два клапана, работающих в одном направлении.
При движении поплавка вниз гофрированная труба растягивается, в итоге происходит забор воды. Когда поплавок движется вверх, гофра сжимается и выталкивает воду вверх. Поэтому поплавок должен быть достаточно тяжелый и большой.
Вся конструкция жестко крепится к мачте.
Вариант 2
Эта конструкция отличается от первого варианта тем, что гофрированная труба заменена тормозной камерой. Данная схема, основанная на диафрагме, очень часто применяется в выполненных своими руками простых насосах для воды. Такой насос достаточно универсальный и может получать энергию от ветра, воды, пара, солнца.
Тормозную камеру следует разобрать и оставить только два отверстия для клапанов.
Изготовление подходящих клапанов – отдельная задача.
- медная или латунная трубка;
- шарики немногим большего диаметра – 2шт.;
- пружинка;
- медная полоска или пруток;
- резина.
Для впускного клапана отрезаем трубку и рассверливаем таким образом, чтобы шарик плотно сидел на трубке. Необходимо добиться, чтобы шарик не пропускал воду. Для того чтобы шарик не выпал, сверху припаиваем проволоку или полоску.
Конструкция выпускного клапана отличается от впускного наличием пружинки. Пружинку необходимо установить между шариком и медной полоской.
Из резины вырезаем диафрагму по размеру тормозной камеры. Для привода диафрагмы нужно просверлить отверстие в центре и протянуть шпильку. Клапана вставляем снизу тормозной камеры. Для герметизации можно воспользоваться эпоксидным клеем.
Шарики для клапанов лучше найти не металлические, так они не буду подвержены коррозии.
Вариант 3
Опираясь на конструкцию двух предыдущих вариантов можно задуматься о сооружении более совершенной модели.
Для этого насоса необходимо забить четыре кола (1) в дно водоема. Затем изготовить поплавок из бревна. В бревне нужно сделать запилы, чтобы при качании на волнах оно не вращалось.
Для долговечности рекомендуется обработать бревно горячим составом из смеси керосина и олифы. Делать нужно осторожно, обрабатывать на водяной бане: открытого огня быть не должно.
Ограничители хода бревна (3) и (4) прибивают таким образом, чтобы бревно при максимальном движении не повредило шток насоса (5).
Конструкция #8 – устройство из стиральной машины
Зачастую в хозяйстве остаются детали или даже целые агрегаты от старых вещей. Из уже ненужной стиральной машины можно извлечь центробежный насос. Такой насос отлично подойдет для откачки воды с глубины до 2 метров.
- центробежный насос от стиральной машины;
- лепестковый клапан от стиральной машины или самодельный;
- заглушка, бутылочная пробка;
- шланг;
- желательно разделительный трансформатор.
Если используется готовый клапан от стиральной машины, то его необходимо доработать. Одно отверстие нужно заглушить, например с помощью бутылочной пробки.
Лепестковый клапан подсоединяем к шлангу и опускаем в приямок или колодец. Второй конец шланга подсоединяем к насосу. Чтобы система начала работать, необходимо заполнить водой шланг с клапаном и сам насос. Осталось подключить трансформатор, и насос готов к работе.
Конструкция #9 – водяной насос из компрессора
Если у вас уже пробурена скважина, есть воздушный компрессор, не спешите приобретать водяной насос. Его с успехом заменит конструктивно простое эрлифтное устройство.
- изливная труба д.20-30мм.;
- труба для воздуха 10-20мм.;
Принцип действия насоса, очень прост. В изливной трубе необходимо просверлить отверстие, расположить их нужно ближе ко дну. Отверстие должно быть в 2-2,5 раза больше по диаметру трубы для воздуха. Остается вставить воздушную трубу и подать давление воздуха.
Эффективность такого насоса зависит от высоты уровня воды, глубины водоема, мощности компрессора (производительности). КПД составляет около 70%.
Конструкция #10 – шестеренная водяная машина
Сердце такой конструкции – это шестеренные насосы для нагнетания масла от сельхоз- или грузовой техники. Похожие характеристики у силовой установки гидроусилителя руля от КрАЗ.
- рабочий объем насоса – 32 см 3 ;
- максимальное давление – 2,1 Атм;
- рабочая частота вращения – 2400 об/мин;
- максимально допустимая частота вращения – 3600 об/мин;
- номинальный прокачиваемый объем – 72 л/мин.
К такому насосу, при возможности подсоединяют двигатель от стиральной машины. Двигатель бытовой техники имеет ряд преимуществ: работает от однофазной сети 220В, имеет пусковую систему (конденсатор).
Для получения необходимых оборотов, возможно, потребуются шкивы и ремень. Достоинство шестеренчатого насоса в том, что шестерни способны создать необходимую всасывающую силу даже без предварительного заполнения водой.
Единственное замечание: после работы насоса для предотвращения коррозии стальных шестеренок, необходимо дать поработать насосу в холостую около 20 минут.
Конструкция #11 – насос из велосипедного колеса
Производительный насос на основе двух колес.
- канализационные трубы и отводы ПВХ;
- велосипедное колесо;
- нейлоновая веревка;
- небольшой шкив;
- несколько поршней;
- крепежная штанга.
Принцип действия этого насоса похож на работу драглайна.
Для начала необходимо соорудить из канализационной трубы гильзу, которая будет погружена в воду. На верхнюю часть гильзы надевается отвод, через который будет стекать вода. Далее устанавливаем снизу малый шкив (подойдет обод колеса от тачки), а сверху велосипедное колесо.
По всей длине веревки крепим серию поршней, предварительно пропустив через гильзу. Веревка должна охватывать шкив и велосипедное колесо.
Вращая велосипедное колесо, каждый поршень на веревке захватывает воду и как на лифте поднимает вверх. Водяной столб изливается в отвод.
Конструкция #12 – “самоделка” для небольшого ручья
Этот насос может обходится сверхмалым количеством энергии. Конечно хорошо, если есть река или озеро. Но что делать, если летом река сильно мелеет? Поможет насос качельного типа.
Основная часть конструкции – это два ковша жестко связанные между собой через блоки (4). От ручья необходимо сделать водоотвод из оцинкованной стали (3). Для того чтобы уменьшить износ, под него подкладывают кусок пластика. Водоотвод жестко связан поводком с веревкой (5).
Всю систему необходимо отрегулировать таким образом, чтобы при наполнении одного ковша, водоотвод перемещался на второй ковш. Энергия ковшей посредством кривошипа (8) передается на насос (10).
Конструкция #13 – фитильный насос Шухова
Русский изобретатель Шухов прославился многими сооружениями, в числе которых радиобашня в Москве. Ниже будет рассмотрено еще одно его изобретение – водяной насос.
В работе насоса используется специальная веревка. Эта веревка состоит из плетенных хлопчатобумажных нитей общей толщиной 5-6 мм, заключенных в оболочку. Нить пропущена через шкивы.
Когда происходит движение, веревка намокает и наматывается на шкивы. Шкив (5) с помощью пружины (4) с усилием прижимает веревку к шкиву (3). Отжатая вода стекает в лоток (7). На рисунке «в» показаны сечения шкивов (3) и (5) соответственно.
Для работы всей системы необходим электродвигатель всего 5-10 ватт. Обычно, такие двигателя имеют 1500 об/мин.
Для снижения оборотов и увеличения усилия можно применить червячную передачу, показанную на рисунке «в». Ее вполне возможно изготовить вручную. Для этого необходимо найти подходящее зубчатое колесо, а червяк сделать из проволоки. Небольшие усилия на валу допускают неточности изготовления.
Своими руками можно собрать не только насос, качающий воду для бытовых нужд, но и устройство, которое можно с успехом использовать в ландшафтном оформлении участка. Удачные варианты самодельных насосов для фонтана представит следующая статья.
Выводы и полезное видео по теме
Ролик #1. Процесс изготовления простого агрегата для откачки воды:
Ролик #2. Мини-вариант самодельного водяного насоса:
Ролик #3. Принцип работы элементарного насоса – эрлифта:
Представленные варианты самодельных насосов для откачки воды выполнены из подручных средств, зачастую даже не имеющих стоимости. Вся прелесть состоит в том, что каждая конструкция совершенно открыта для дальнейших усовершенствований и модернизаций. Так что ваш насос наверняка будет уникальным изделием.
Конечно, соорудить автономную систему водоснабжения на дачном участке, ручные насосы не помогут, но избавят от приложения внушительных физических усилий, требующихся для забора и транспортировки воды к месту использования.
У вас есть собственные интересные решения по изготовлению самодельных насосов? Хотите поделиться еще одним любопытным вариантом? Нашли недоработки в статье? Комментируйте, пожалуйста, в расположенном под текстом блоке.
Источник: http://sovet-ingenera.com/vodosnab/nasosy/samodelnyj-nasos-dlya-vody.html
Особенности водяных насосов без питания
- Изготовление водяного насоса
- Реальная польза
- Принцип работы водяного насоса
- Виды насосов
Никогда не знаешь, где нам пригодятся знания по школьным предметам. Особенно по физике. Об этом устройстве, который построен на знаниях физике, и пойдет речь. Данный насос является исключительно следствием развития как человеческого прогресса, так и нестандартного мышления. Для работы ему не требуется ни электричество, ни топливо, даже не нужно что-то дополнительно делать. Но насос способен давать хорошее давление и поднимать высокие столбы воды, что многие, не разобравшись, называют обманом. А это далеко не так.
Изготовление водяного насоса
На первый взгляд, такой агрегат не вызывает доверия, ведь в нашем понимании насосы несколько больше и вообще другие. Но на самом деле, абсолютно все узлы данного агрегата являются работающими, причем не от какого – то топлива, а от обычных законов физики, что проходят в 8 классе. Дело тут в разнице давления, создаваемого внутри такого насоса. Клапана настроены таким образом, что при определенном давлении один открывается, другой закрывается. Это очень похоже на старый добрый насос ручной типа гармошки, где при давлении на действующий клапан, выходил воздух, а при его отдавании, на свободное место поступала вода.
В основном, такая конструкция изготавливается из труб (пеновинилхлоридовых). Имеет вид прямой трубы с клапанами, ревизиями и заглушками, которые вмонтированы на более широкий участок трубы. Сами трубы сажаются или на клей или спаиваются между собой при помощи специального оборудования.
Самое широкое в этой конструкции – буфер или ресивер, который необходим для выравнивания и накопления давления. По бокам расположены входные выпуски. Но стоит ли смотреть на другую сторону? Нет, они примерно одинаковые. Только с тем условием, что правый клапан является приточкой воды, а левый – выпускным.
Получается, поток воды подается на правый клапан. К слову, можно вместо клапанов использовать и обычные шаровые краны. После этого, вода идет на тройник. Тройник же разделяет потоки: один поток уходит на верх к клапану, при определенном давлении который закрывается, прямой же поток идет на тот клапан, который открывается при достижении необходимого давления. После этого идёт еще один тройник, но уже на ресивер, а после этого – на выход. Так же, желательно использовать манометр, который покажет давление в зависимости от места установки. Обычно ставят один манометр на приточку, но так же можно поставить и на отдающий клапан.
В общем, уяснили, что вода подается на шаровый кран справа. Далее идет на тройник. Тройник, разделяет потоки. Вверх подает к клапану, который закрывается при достаточном давлении. А прямой поток подается на клапан, который открывается при достижении нужного давления.
Затем, идет опять тройник на ресивер и уже на выход. А, ещё манометр, но его может и не быть, не столь важен.
Самодельные вариант без питания вполне можно изготовить своими руками. Если учитывать все наши рекомендации. В таком случае не обойтись без бензина.
Реальная польза
Фактически, это не совсем насос, а скорее усилитель напора. Это связанно с тем, что для его работы нужно определенное давление. Еще такой тип изделий называют «гидрофор», ведь и там и тут есть гидрозатвор, который открывает и закрывает клапан при достижении определенного давления. Ресивер должен всегда находится в вертикальном положении.
По некоторым испытаниям, насос спокойно забирает воду из ручьев и озер, но не с огромной скоростью. Для тех, кому приходится часто ходить на речку за водой, создание такого насоса вполне хорошее и основательное занятие.
Но лучше использовать такой насос не самостоятельно, а в паре с несколькими такими насосами: они не будут мешать друг другу, но количество воды будет гораздо большим.
Плюс можно их объединить на выходе в одну трубу водоподачи, но главное помнить: труба должна быть диаметром в два раза шире при наличии двух таких изделий. Это связано с тем, что может нарушится основной принцип работы такой конструкции и насосы перестанут нормально функционировать.
Принцип работы водяного насоса
Пусть это и кажется чем-то фантастическим и похоже на шутку, дело кроется тут в одном секрете. Второе название такого насоса «гидроударный», а работают они таким образом: вода идет по магистрали и как только давление повысится, клапан выходящий резко закроется, вода же по инерции пойдет дальше, то неминуемо произойдет гидроудар, который создаст большое и избыточное давление, которое будет способно открыть второй клапан. После этого вода попадет в ресивер, который и будет сжимать воздух.
Когда давление упадет, то выходящий клапан автоматически закроется и вода опять пойдет через средний и на верхний, после чего вода побежит на верх.
Виды насосов
Насосы бывают разные, в основном они работают от электричества, но встречаются и варианты работы на другом топливе, например, на дизельном. Насосы делятся на две группы: объемные и динамические. Объемные насосы имеют принцип действия такой, что жидкость попадает в рабочую камеру и вытесняется из неё. Они цикличны и герметичны, а так же обладают свойством самовсасывания. Динамические же насосы не имеют рабочей камеры. Еще различают насосы по реализации: механические, магниторазрядные, стрйные и криогенные. Так же различают насосы по мощности, по назначению. Но помимо этого есть и устройства для специальных работ, такие как насосы для химических жидкостей и фекальные насосы.
Химические насосы нужны для перекачки разных жидкостей, в основном агрессивных, с которыми не справятся обычные насосы. Зачастую, они имеют соответствующее покрытие. Основная области применения – нефтепромышленность и химическая промышленность. Часто можно встретить и на лакокрасочной промышленности.
Фекальные насосы же применяются для работы в загрязненных водах и жидкостях. Они отличаются от остальных тем, что рассчитаны на гораздо большую вязкость, нежели обычные, а так же спокойно справляются с небольшими средними частицами, в том числе и с песком, гравием. Фекальные насосы бывают как погружными, так и полупогружными.
О том, как сделать водяной насос без питания своими руками, смотрите в следующем видео.
Источник: http://stroy-podskazka.ru/vodosnabzhenie/nasosy/bez-pitaniya-osobennosti/
#лучшедома. Мастерим гидротаран – насос без электричества и топлива
Редакция HouseChief продолжает цикл публикаций с хештегом #лучшедома для того, чтобы нашему уважаемому читателю было нескучно проводить время в самоизоляции. Ведь изготовление полезных самоделок вместо ежедневного просмотра телевизора поможет держать себя в тонусе. И в сегодняшней статье речь пойдёт об изготовлении очень полезного приспособления для дачи − гидротаранного насоса, который способен перекачивать воду без использования топлива или электричества. Свой вариант подобной самоделки предлагает автор YouTube-канала «ARS Pro».
Читайте в статье
Что потребуется для изготовления гидротарана своими руками
Больших затрат на изготовление подобного изделия не потребуется. Основными деталями здесь будут два обратных клапана. Их диаметр зависит от необходимого напора воды. В сегодняшнем примере будут использоваться клапаны и трубы на полдюйма, однако если требуется, допустим, полив огорода, придётся подбирать более толстые элементы.
Помимо клапанов необходимо подготовить пластиковые трубы, пару тройников, колено, шаровой кран и пластиковую бутылку, которая будет использоваться в качестве расширительного бачка.
Подготовка материала для изготовления гидротаранного насоса
Для соединения металлических и пластиковых элементов можно использовать специальные переходники, однако в данном случае намного проще попросту нарезать резьбу на трубах. Сделать это довольно просто при наличии плашки необходимого размера. Слишком большого давления гидротаран создать не сможет, а значит, и такое соединение будет держать неплохо. Если же мастер не слишком доверяет подобному соединению, можно приобрести специальные элементы.
Примерка и пайка элементов насоса
Перед тем как приступить к сборке конструкции, стоит примерить детали, рассчитав необходимую длину труб. Если обратить внимание на фотопример ниже, то расположение деталей будет следующим (слева направо):
- обратный клапан, направленный вниз, отрезок трубы, колено, перемычка;
- врезка трубы, через которую будет подаваться вода, обратный клапан направлен вверх;
- правый отвод, через который вода будет поступать из ёмкости, реки или озера.
Особой сложностью конструкция не отличается, однако следует принять во внимание, что приведённые размеры позволят лишь умыться, хотя и при таком диаметре труб насос способен поднять воду на 2-3 м. Для полива можно использовать трубы диаметром 40 или даже 50 мм.
Сборка гидротарана: некоторые нюансы
Для удобства работы с гидротаранным насосом на первый обратный клапан стоит установить дополнительный кран, хотя можно обойтись и обычной заглушкой. Пока она закрыта, вода через насос проходить не будет. На фотопримере ниже можно увидеть уже собранную конструкцию, на которой сверху установлен расширитель.
ФОТО: YouTube.com Так выглядит собранный гидротаран
Теперь стоит разобраться, по какому принципу он работает.
Принцип действия гидротаранного насоса
Подача воды в сам гидротаран производится по чёрному шлангу из резервуара. Если требуется забор из реки или озера, необходимо обустроить всё так, чтобы сам насос находился не менее, чем на метр ниже уровня поверхности воды. Если это условие не соблюдено, работать гидротаран не будет.
Поступающая вода проходит через обратный клапан, направленный вверх, попадая в расширитель, который помогает в перекачке. Далее она поступает через запорную арматуру в более тонкий шланг, по которому уже может подняться на более высокий уровень. Подобную систему можно использовать не только для полива, но и для душевой, если вода в реке достаточно чиста. А вот использование стационарного резервуара здесь будет нерентабельным. Часть воды будет вытекать на землю через обратный клапан, направленный вниз.
Далее можно увидеть верхнюю часть гидротарана и отходящий более тонкий шланг.
ФОТО: YouTube.com Вода будет подаваться на более высокий уровень по тонкому шлангу
Первый запуск гидротаранного насоса
Если все необходимые параметры по уровням соблюдены, то при открытии первого обратного клапана (направление вниз) из него толчками начнёт вытекать вода. Именно эта пульсация и позволяет перекачивать жидкость на более высокий уровень. Если гидротаран расположить возле реки или озера, эти излишки будут стекать обратно в водоём.
При необходимости использования подобного насоса для летнего душа стоит продумать отвод воды в сторону. В противном случае вытекающая из клапана и стекающая в реку вода будет поднимать грязь. А мыться под таким душем вряд ли кому понравится.
Рассмотренный сегодня пример представлен лишь для того, чтобы читателю стал понятен принцип работы гидротарана, поэтому и в качестве водоёма была использована обычная металлическая ёмкость.
ФОТО: YouTube.com Забор воды гидротараном из подобного резервуара нерентабелен – половина окажется на земле
Подводя итоги
На первый взгляд может показаться, что работа гидротарана нарушает все законы физики, однако это не так. Именно пульсация воды, создаваемая первым обратным клапаном, и запирание при помощи второго позволяют всей конструкции функционировать. Ну, а сила потока уже будет зависеть от перепада уровней поверхности воды и расположения гидротарана. Главное – правильно рассчитать необходимый диаметр магистралей. И тогда на участке всегда будет вода для полива, а для её транспортировки не понадобится применения силы или использования топлива и электроэнергии.
Надеемся, что изложенная сегодня информация поможет дачникам и домовладельцам использовать время самоизоляции при карантине с пользой. Ведь изготовление полезных приспособлений гораздо интереснее, чем продавливание дивана перед телевизором. А если эти самоделки впоследствии помогут сберечь семейный бюджет, то это вдвойне приятно. Если у вас остались какие-либо вопросы по теме, смело задавайте их в обсуждениях ниже. Редакция HouseChief обязательно ответит на каждый из них в максимально сжатые сроки. Там же вы можете оставить свои комментарии к статье, выразить личное мнение о прочитанном или поделиться своим опытом изготовления гидротарана, если таковой имеется. Вам понравилась статья? В таком случае не забудьте поставить оценку. Ваше мнение очень важно для нас. Берегите себя.
Источник: http://housechief.ru/gidrotaran-nasos-bez-jelektrichestva-i-topliva.html
Самодельный насос для откачки воды: подборка из 7-ми лучших вариантов
После приобретения земельного участка дачник начинает решать наиболее важные проблемы: нужно же с чего-то начинать, чтобы обжиться. Самое главное – это обеспечить себя водой. Действительно, с тех пор, как жизнь зародилась в воде, без неё всё живое долго не может существовать. Привозить воду откуда-то можно, но только для личных нужд. Проблему полива таким методом не решить. Хорошо, если вода есть хотя бы поблизости от участка. Устроит любой, даже небольшой, водоём: речка или хотя бы ручеек. Идеальным вариантом является родник, но так везёт редко. Осталось обзавестись насосом. Кстати, на первых порах подойдет самодельный насос для воды. Его использование снимет остроту проблемы.
Вариант #1 – американская речная помпа
Такая модель насоса, для работы которого не нужно электричество, может быть использована умельцами, которым повезло приобрести участок на берегу небольшой, но очень бурной речушки.
Шланг в бочку укладывается ровными витками без заломов и перегибов. И всё сооружение в целом выглядит довольно незатейливо, но вода с его помощью исправно поставляется на берег
Для создания насоса понадобится:
- бочка диаметром в 52см, длиной в 85см и весом примерно в 17 кг;
- шланг, накрученный в бочке, с диаметром в 12мм;
- выпускной (подающий) шланг 16мм в диаметре;
Есть ограничения и для среды погружения: рабочая глубина потока не должна быть менее 30см, скорость перемещения воды (течения) – 1,5 м/сек. Такой насос обеспечивает подъём воды на высоту не более 25 метров по вертикали.
Составляющие элементы: 1- выпускной шланг, 2- втулочная муфта, 3-лопасти, 4 –пенополистероловые поплавки, 5 – спиральная намотка шланга, 6 – входное отверстие, 7- дно конструкции. Бочка отлично держится на плаву
Подробности использования этого насоса можно рассмотреть на видео.
Вариант #2 – самодельный волновой насос
В работе этого насоса тоже используются преимущества, которые обеспечивает находящаяся поблизости от участка река. В водоёме без течения такой насос вряд ли будет эффективен. Чтобы его изготовить, потребуются:
- гофрированная труба типа «гармошка»;
- кронштейн;
- 2 втулки с клапанами;
- бревно.
Труба может быть как из пластика, так и из латуни. В зависимости от материала «гармошки» нужно корректировать и вес бревна. Латунной трубе будет соответствовать бревно весом более 60кг, а для пластиковой подойдет и не такой тяжелый груз. Как правило, вес бревна подбирают практическим путем.
Этот вариант насоса подойдет для речки и не с самым бурным течением, важно чтобы оно просто было, тогда «гармошка» будет сокращаться, а вода нагнетаться
Оба конца трубы закрывают втулками, имеющими клапана. С одной стороны труба крепится к кронштейну, с другой – к бревну, помещенному в воду. Работа устройства непосредственно зависит от перемещения воды в реке. Именно её колебательные движения должны заставлять «гармошку» действовать. Ожидаемый эффект при скорости ветра в 2м/сек и при возросшем давлении до 4-х атмосфер может составить примерно 25 тыс. литров воды в течение суток.
Как вы понимаете, насос представлен в упрощенном варианте. Его можно усовершенствовать, если исключить для бревна нежелательный крутящий момент. Для этого зафиксируем его в горизонтальной плоскости, установив на подъёмнике при помощи болта кольцевой ограничитель. Теперь насос прослужит дольше. Ещё один вариант улучшений: впаянные наконечники на концах трубы. Втулки на них можно просто навинчивать.
Особое внимание следует уделить и предварительной подготовке бревна. Не забываем, что оно будет помещено в воду. Готовим смесь из натуральной олифы и керосина из расчета один к одному. Само бревно пропитываем смесью 3-4 раза, а запилы и торцы, как наиболее гигроскопичные, шесть раз. Смесь в процессе работы может начать застывать. При прогревании на водяной бане она вернет текучесть без потери остальных свойств.
Вариант #3 – печь, создающая разницу давления
Умельцы, чья идея воплотилась в этом чуде инженерной мысли, назвали своё детище «печь-насос». Им, конечно, виднее, но на начальной стадии своей работы этот насос похож на самовар. Впрочем, воду он действительно не греет, а создаёт разницу в давлении, за счет чего и осуществляется его работа.
Для такого насоса необходимо:
- стальная бочка на 200 литров;
- примус или паяльная лампа;
- патрубок с краном;
- сетчатая насадка для шланга;
- шланг резиновый;
- дрель.
Патрубок с краном нужно врезать в нижнюю часть бочки. Сверху бочку закрыть резьбовой пробкой. В этой пробке предварительно просверливают отверстие и вставляют в него шланг из резины. Сетчатая насадка нужна для того, чтобы закрыть второй конец шланга перед тем, как него опускают в водоём.
Такой вариант насоса можно даже назвать остроумным и, что самое главное, этот «прибор» наверняка будет хорошо работать
В бочку наливают примерно два литра воды. Под бочку ставят нагревательный элемент (примус или паяльную лампу). Можно просто развести под днищем костер. Воздух в бочке нагревается и выходит по шлангу в водоём. Это будет заметно по бульканью. Огонь гасят, бочка начинает остывать, а из-за низкого внутреннего давления в неё нагнетается вода из водоёма.
Чтобы наполнить бочку, в среднем, нужно не менее часа. Это при условии диаметра отверстия в шланге в 14 мм и расстояния в 6 метров от места, откуда предстоит поднять воду.
Вариант #4 – черная решетка для солнечной погоды
Вот уж для этого изделия потребуются специальные приспособления. Откуда, например, у вас возьмется черная решетка, в полых трубках которой содержится сжиженный пропан-бутан? Впрочем, если эта часть задачи будет решена, остальное не вызывает особых затруднений. Итак, решетка есть, и она соединена с резиновой грушей (баллоном), которая помещена в бидон. В крышке этого бидона имеются два клапана. Один клапан впускает воздух внутрь ёмкости, а через другой воздух с давлением в 1атм выходит в воздуховод.
Решетку действительно лучше делать черного цвета, потому что черные изделия всегда активнее нагреваются под ярким летним солнцем
Работает система так. Поливаем в солнечный день решетку холодной водой. Пропан-бутан охлаждается, а давление газовых паров понижается. Баллон из резины сжимается, а в бидон поступает воздух. После того, как солнце высушит решетку, пары снова раздуют грушу, а воздух под давлением начнет поступать через клапан прямо в трубу. Воздушная пробка становится своеобразным поршнем, который выгоняет воду чрез душевую головку на решетку, после чего цикл повторяется.
Конечно, нас интересует не сам процесс поливания решетки, а та вода, которая собирается под ней. Специалисты утверждают, что насос прекрасно функционирует даже в зимнее время. Только на этот раз в качестве охладителя используется морозный воздух, а нагревает решетку вода, извлекаемая из-под земли.
Вариант #5 – нагнетатель из пластиковой бутылки
Если вода находится в бочке или другой ёмкости, то использовать в этом случае шланг для полива представляется проблематичным. На самом деле всё не так уж сложно. Можно буквально из подручных материалов сконструировать самодельный насос для откачки воды, который будет работать по принципу компенсации уровня жидкости в сообщающихся сосудах.
Нагнетание воды происходит в результате нескольких поступательных движений. Клапан, который размещается под крышкой, не позволяет воде вернуться в бочку, что вынуждает при увеличении её объёма, вытекать наружу. Несерьёзное, на первый взгляд, сооружение является основательным подспорьем в дачной работе.
Для ручного насоса необходимо:
- пластиковая бутылка, в крышке которой обязательно должна быть прокладка-мембрана из пластика;
- шланг, подходящий по длине;
- стандартная трубка, диаметр которой соответствует размеру горлышка бутылки.
Как именно можно собрать такой насос и как он будет функционировать, смотрите на видео, где всё подробно разъяснено.
Вариант #6 – деталь от стиральной машинки
Привычка покупать новые вещи, когда есть старые аналоги, очень разорительна. Соглашусь, что старая стиральная машинка уже не способна конкурировать с новыми моделями, но её насос ещё может послужить вам на славу. Например, с его помощью можно откачать воду из дренажного колодца.
Стиральная машинка давно отслужила своё. Её попросту вытеснили новые модели с новыми возможностями. Но её сердце – насос ещё способен послужить владельцу
Для двигателя такого насоса нужна сеть в 220В. Но лучше для его питания применить разделительный трансформатор с надежной изоляцией входной и выходной обмотки. Не забываем и про качественное заземление сердечника или металлического корпуса самого трансформатора. Соизмеряем мощность трансформатора и двигателя.
Мы используем центробежный тип насоса, поэтому ставим клапан на конце шланга, опущенного в воду, а систему заполняем водой. Обратный клапан, который в разобранном виде представлен на фото, тоже можно снять со стиральной машинки. А голубая притертая пробочка просто идеально подошла, чтобы лишнее отверстие тоже оказалось закрытым. Наверняка в ваших запасах найдется нечто подобное.
Буквально из мусора, как оказалось, можно собрать вполне функциональную вещь, которая не просто работает, а делает свою работу хорошо и быстро
Получившийся самодельный насос очень хорошо работает, откачивая с глубины примерно в 2 метра воду с приличной скоростью. Важно его вовремя отключать, чтобы воздух не попал в систему, и не пришлось её опять заполнять водой.
Вариант #7 – Архимед и Африка
Все прекрасно помнят историю про винт, изобретенный Архимедом. С его помощью осуществлялось водоснабжение ещё в древних Сиракузах, не знавших электричества. Очень остроумный вариант применения Архимедова винта придумали в Африке. Насос-карусель служит одновременно и развлечением для местной детворы, и вполне функциональным сооружением, обеспечивающим водой небольшое поселение. Если у вас есть дети, а у них – друзья, которые любят кататься на карусели, возьмите этот опыт себе на вооружение.
1– детская карусель, 2- насос, 3- пласт водоносный, 4- резервуар с водой, 5-колонка с водой, 6- возвращающая воду труба на случай переполнения резервуара
Как видите, возможностей для водоснабжения великое множество. И электричество в этом вопросе может вообще не участвовать. Оказалось, некоторые насосы для воды своими руками может сделать даже школьник. Важно, чтобы было желание, светлая голова и умелые руки. А идеи мы вам подкинем.
Источник: http://diz-cafe.com/tech/samodelnyj-nasos-dlya-vody.html
Гидротаран — водяной насос без электричества
Гидравлический таран не имеет никакого отношения ни к военной технике, ни к разрушению чего бы то ни было. Он представляет собой всего лишь насос, который поднимает часть проходящего по нему потока жидкости на высоту, превышающую исходный уровень, за счёт кинетической энергии всего потока. Основная область его применения — мелиорация и орошение, в своё время он довольно широко использовался и пожарными, — ведь ему не требуется ни двигателей, ни топлива, а нужно лишь достаточное количество воды и небольшой перепад высот — вплоть до десятка-другого сантиметров. Грозное название же скорее всего является ни чем иным, как неверным переводом термина «гидравлический удар» или неудачным переводом английского названия ram-pump («таранный насос»). Тем не менее, это название закрепилось за сугубо мирным устройством пару веков назад и благополучно дожило до нашего времени. Как же работает этот насос?
Общие сведения о гидротаране
В 1775 году англичанин Джозеф Уайтхёст (J.Whitehurst) впервые опубликовал описание подобного насоса, изобретённого и построенного им тремя годами ранее (1772). Однако его конструкция не была полностью автоматической, поэтому в 1776 году её доработал и на следующий год получил патент на своё изобретение француз Монгольфье (J.Montgolfier — тот самый, что изобрёл воздушный шар). Затем в течение нескольких лет были получены ещё несколько патентов на аналогичные конструкции (M.Bulton — Англия, 1797; J.Cernay, S.Hallet — США, 1809). В 1834 году промышленное производство таких насосов начал американец Стрoубридж (H.Strawbridge).
Вплоть до самого конца XIX века расчёт подобных устройств основывался на эмпирических закономерностях, подходящих лишь для частных случаев. И только создание в 1897-1898 годах профессором Н.Е.Жуковским теории гидравлического удара позволило поставить расчёты на научную основу. Однако лишь в 1930 году профессором С.Д.Чистопольским в работе «Гидравлический таран» был наконец опубликован метод теоретического расчёта этих устройств, который до сих пор считается надёжным. Такое «отставание» теории объясняется тем, что при работе гидравлического тарана происходит несколько тесно связанных нестационарных процессов, которые нельзя просчитать методами математического анализа (интегралы, которые при этом необходимо взять, относятся к категории неберущихся — даже в случае простейшего расчёта заполнения трубы).
Общее описание устройства гидравлического тарана
Работа гидротарана основана на использовании явления гидравлического удара — кратковременного резкого повышения давления при внезапной остановке потока жидкости в жёсткой трубе.
Принцип работы «гидравлического тарана» — насоса, использующего явление гидроудара. Слева фаза разгона потока, справа — фаза нагнетания (момент гидравлического удара).
1 — питающий резервуар (верхний уровень естественного потока); 2 — нагнетательная (ускорительная) труба; 3 — отбойный (ударный) клапан; 4 — напорный (нагнетательный) клапан; 5 — воздушный колпак; 6 — напорная (отводящая) труба. H — высота подъёма воды относительно уровня слива; h — уровень питающего резервуара относительно уровня слива.
Вот как описана работа этого устройства в энциклопедии: ГИДРАВЛИЧЕСКИЙ ТАРАН, устройство, которое за счет гидравлического удара поднимает воду на высоту, значительно превышающую уровень источника. Вода от источника (1) самотеком подается по длинному напорному трубопроводу (2), идущему с небольшим понижением. Под действием нарастающего динамического напора воды закрывается отбойный клапан (3), расположенный на нижнем конце трубопровода, и вследствие инерции движущейся воды и ее несжимаемости давление здесь резко повышается. Кратковременного повышения давления достаточно для подъема небольшой части воды через напорный клапан (4) на высоту более 50 м. Затем отбойный клапан открывается, и все повторяется сначала.
Гидравлический таран действует только за счет импульса движущегося столба воды, без какого-либо двигателя. Применяется в сельском хозяйстве, для водоснабжения небольших строек и т.д.
В фазе разгона потока отбойный клапан в открытом состоянии обычно удерживается с помощью пружины, для закрытия напорного клапана при показанной на рисунке компоновке может вполне хватить разницы давлений и его собственного веса.
На рисунке показано чуть более сложное устройство — оно содержит воздушный колпак 5, играющий ту же роль, что и гидроаккумуляторные баки с резиновой мембраной в современных автономных водопроводных системах. Этот колпак накапливает воду под давлением и сглаживает пульсации потока нагнетаемой воды, хотя теоретически максимальная высота подъёма при этом несколько уменьшается, поскольку в отводящую трубу 6 уже поступает не резкий импульс от гидравлического удара, возникающий при закрытии клапана 3, а усреднённое давление, сглаженное «пневматическим амортизатором» — воздухом в колпаке 5. Однако чуть дальше мы увидим, что сглаживание пульсаций — лишь дополнительный «бонус» воздушного колпака. Главная его функция заключается в другом, и без такого узла подъём воды по более-менее длинному напорному каналу будет весьма затруднён.
Очевидно, что ни о какой «сверхъединичности» или дополнительной энергии речь здесь не идёт — значительная часть воды сливается через отбойный клапан в фазе разгона, пока поток наберёт нужную скорость. Энергии, которую эта вода получает при спуске от уровня питающего резервуара, с избытком хватает на поднятие нагнетаемой части воды по отводящей трубе. Тем не менее, этот насос позволяет весьма эффективно использовать перепад уровней даже в десяток сантиметров, вполне достаточный для разгона потока до заметной скорости, а расход воды при этом должен лишь обеспечить заполнение сечения нагнетательной трубы. Ни одно широко распространённое гидротехническое устройство (водяные колёса, а тем более турбины) не может использовать столь малые перепады уровня при столь малом расходе с такой эффективностью, как гидравлические тараны.
Невзирая на многовековую историю, терминология гидравлических таранов до сих пор ешё окончательно не устоялась, и в разных источниках одни и те же узлы называются по-разному. Иногда даже в одной работе используется несколько названий одной и той же части. Поэтому ниже в таблице приведены соответствия различных вариантов названий.
Название на этом сайте
Другие варианты
2
Ускорительная труба, разгонная труба, ударная труба.
3
Ударный клапан, отсекающий клапан, запирающий клапан.
4
5
6
Отводящая труба, подающая труба.
Гидравлические тараны обладает несколькими важными достоинствами, которые в своё время и обеспечили их довольно широкое распространение.
Прежде всего, для их работы не нужно ни каких-либо двигателей, ни мускульных усилий. Будучи один раз установленым и запущеным, гидротаран может работать до пересыхания питающего потока (осушения питающего резервуара) или до механического износа деталей, которые в нём можно пересчитать по пальцам.
Во-вторых, для работы достаточно минимального перепада уровней, начиная с десятка-другого сантиметров, и относительно небольшого расхода воды (обычно от долей литра до нескольких литров в секунду).
В-третьих, несложные накопительные устройства в питающем резервуаре позволяют гидравлическому тарану работать и с ещё меньшим расходом воды, дожидаясь, пока она накопится в необходимом количестве и только тогда совершая рабочий цикл. Благодаря этому гидротараны могут максимально эффективно использовать энергию потока как при большом расходе воды (в паводок), так и при очень малом (в межень). И водяные колёса, и турбины предназначены для работы с непрерывным потоком и в таких условиях не смогут работать в принципе — энергии накопленной порции воды, достаточной для гидравлического тарана, им может не хватить даже для того, чтобы сдвинуться с места, а их микроварианты, рассчитанные на минимальный расход воды, будут выдавать такую же мизерную мощность и тогда, когда питающий поток вновь станет полноводным.
В-четвёртых, простота конструкции и минимум деталей обеспечивают выдающуюся надёжность и долговечность устройства — непрерывная работа без ремонта в течение 10 лет считалась вполне обычным делом.
Наконец, классический гидравлический таран можно собрать буквально «на коленке», практически в любой сельской мастерской, где чинят трактора и плуги. При этом он прощает многие ошибки в расчётах и изготовлении — за них придётся заплатить меньшей эффективностью и долговечностью, но не полной потерей работоспособности, — насос всё же будет действовать. Единственное безусловное требование — это высокая прочность всех деталей.
Однако при всех своих положительных качествах гидравлический таран имеет и недостатки, которые по мере распространения относительно недорогого и удобного электричества и моторизованной техники в конечном счёте привели к почти полному вытеснению этих безмоторных насосов обычными насосами с электрическим или бензиновым приводом. Часть этих недостатков может быть компенсирована достаточно легко, но устранить другие не представляется возможным, поскольку, как это часто бывает, они являются прямым продолжением достоинств.
Во-первых, для обеспечения разгона потока после очередного открытия отбойного клапана за ним уже не должно быть воды, прошедшей туда в предыдущем цикле. Если она по какой-либо причине не уйдёт за время гидравлического удара, то она помешает разгону новой порции воды в нагнетательной трубе, которая не наберёт скорости, достаточной для закрытия отбойного клапана. В самом лучшем варианте поток будет набирать нужную скорость гораздо дольше, чем это произошло бы при отсутствии воды за отбойным клапаном — а это непроизводительные потери воды через отбойный клапан и снижение эффективности работы установки. Естественным путём вода может уйти только при наличии стока, поэтому слив нагнетательного трубопровода (точнее, место расположения отбойного клапана) не может находится ниже уровня сливного водоёма, иначе прошедшая вода не сможет освободить отбойный клапан.
Во-вторых, для разгона потока в нагнетательном трубопроводе до хорошей скорости (хотя бы метр в секунду) необходимо обеспечить перепад высот как минимум в несколько сантиметров на участке длиною в несколько метров.
По этим причинам гидравлические тараны не могут работать в водоёмах с постоянным уровнем поверхности, таких, как пруды и озёра, а также на равнинных участках рек, где на сотни метров, а то и на километры течения приходится разность уровней в сантиметр-другой.
В-третьих, существенная часть воды «теряется» через слив нагнетательной трубы. Причём «теряемый» объём обычно во много раз больше поднимаемого объёма. Конечно, эта вода «теряется» не напрасно, а делает своё дело — её энергия идёт на подъём другой части потока. Однако когда общее количество доступной воды невелико, эта «расточительность» может оказаться неприемлемой. В общем случае эффективность работы таких насосов определяется правильным выбором длины и объёма нагнетательной трубы, соотношения сечений отбойного и напорного клапанов и усилий, нужных для их открытия и закрытия, в зависимости от необходимой высоты подъёма и скорости потока в нагнетательном трубопроводе, то есть, в конечном счёте, рабочего перепада уровней и расхода воды. Поэтому в идеале каждый экземпляр такого насоса надо настраивать индивидуально под конкретные условия установки.
В-четвёртых, при использовании «классического» накопительного колпака 5 с воздухом, воздух может постепенно растворяться в нагнетаемой воде, чему способствует повышенное давление. Поэтому воздух необходимо периодически пополнять. Решить эту проблему поможет использование в качестве такого колпака мембранного гидроаккумуляторного бака, в последние годы ставшего неотъемлемой частью автономных водопроводных систем в коттеджах и на дачах. Другой способ решения этой проблемы — при близком расположении отбойного и напорного клапанов и сильных рабочих гидроударах с отрывом жидкости от отбойного клапана можно попытаться организовать автоматическую подкачку воздуха через эти клапаны, хотя при этом потребуется преодолеть ряд технических проблем.
Наконец, в-пятых, гидравлический таран имеет немалые размеры. Так, обычно считается, что оптимальная длина нагнетательной трубы 2 лежит в диапазоне от 10 до 14 и более метров. Это обусловлено тем, что масса движущейся, а затем останавливающейся воды должна быть достаточно большой, чтобы обеспечить хорошую энергию рабочего гидроудара. Поскольку масса воды прямо пропорциональна её объёму, это накладывает неизбежные ограничения на минимальные размеры более-менее производительных конструкций. Да и длительность гидроудара тоже должна быть достаточной для того, чтобы напорный клапан 4 успел открыться и пропустить заметный объём воды, а это время тоже прямо пропорционально расстоянию от отбойного клапана 3до питающего водоёма или резервуара 1. Впрочем, свернув нагнетательную трубу в спираль, можно в несколько раз уменьшить линейные размеры установки. Но вот вес, определяемый необходимой прочностью и жёсткостью конструкции, существенно уменьшить вряд ли удастся.
С другой стороны, производительность гидротарана ограничена его размерами. Слишком большие размеры гидравлического тарана также вызовут проблемы, поскольку все элементы конструкции в зоне рабочего гидроудара должны обладать не только достаточной прочностью, но и максимальной жёсткостью. По мере роста линейных размеров обеспечение необходимой жёсткости может потребовать слишком толстых стенок и, как следствие, слишком массивных деталей.
Тем не менее, классический гидравлический таран остаётся чрезвычайно простым, неприхотливым и очень необычным устройством, которое совершенно незаслуженно почти забыто в последнее время.
Элементы конструкции гиравлического тарана
После первого знакомства можно рассмотреть гидравлический таран более подробно, заодно выполнив необходимые расчёты.
Где лучше разместить напорный клапан?
В каком месте нагнетательной трубы следует размещать напорный клапан — непосредственно возле отбойного клапана или на некотором расстоянии от него, чтобы процессы, возникающие возле отбойного клапана, не могли повлиять на нагнетание жидкости в напорную трубу? Решение кажется очевидным, однако всё же чуть-чуть подумаем.
Во-первых, следует помнить, что клапаны являются механическими устройствами, обладающими заметной инерционностью, — для их срабатывания требуется как минимум несколько микросекунд, а иногда это занимает и в десятки раз больше времени. С учётом длительности интересующего нас этапа сжатия при гидроударе, составляющей обычно несколько миллисекунд, — а именно в это время и присходит нагнетание жидкости, — время срабатывания клапанов может составить довольно заметную долю этапа сжатия. Поэтому их следует размещать там, гдедлительность этапа сжатия максимальна, то есть как можно ближе к заслонке, роль которой в данном случае играет обойный клапан.
Во-вторых, какие «процессы» возможны возле отбойного клапана? Это локальные колебания давления, возникающие при его запирании и отпирании. Однако превышения давления, способные открыть напорный клапан, лишь добавят воду в напорную часть насоса, а понижения давления тут же «захлопнут» его, не позволив вернуться сколько-нибудь существенной части нагнетённой жидкости обратно. Таким образом, эти процессы не смогут помешать нагнетанию, а в силу своей кратковременности (доли микросекунды) и инерционности клапана вообще вряд ли окажут на него заметное влияние.
Таким образом, напорный клапан в гидравлическом таране надо размещать как можно ближе к отбойному, а при возможности вообще объединить их в один конструктивный узел. И ещё один вывод: желательно обеспечить минимальное время срабатывания клапанов, для чего необходимо уменьшить их инерционность, снизив массу до минимально возможной величины. Последнее особо актуально для насосов с небольшой длиной нагнетательной трубы (менее 10 метров).
Как использовать перепад высот?
Обычно гидротараны изображают с наклонной нагнетательной трубой. Это оправдано в том случае, когда труба укладывается по рельефу, образующему идеальный уклон. Однако в реальности иногда удобнее значительную часть нагнетательной трубы сделать горизонтальной. Где в таком случае лучше организовать уклон и как это будет влиять на эффективность разгона потока? Конечно, для достижения максимальной скорости потока нагнетательная труба должна содержать минимум изгибов и поворотов, а те, что есть, должны быть по возможности скруглены.
С точки зрения школьной физики энергия (и скорость) потока определяется только перепадом высот начала и конца трубы. Но это верно лишь для стационарного потока, а в гидротаране поток нестационарный — он всё время то разгоняется, то останавливается. Поэтому здесь небезразлично, как именно изменяется по длине трубы разгоняющий фактор, то есть давление (напор). Ещё большее значение имеет геометрия трубы, когда перепад высот превышает вакуумную высоту водяного столба (высоту всасывания), однако для реальных гидротаранов такие большие перепады практически не используются, поскольку дают слишком большую скорость потока и требуют очень высокой прочности клапанов (скачок давления при гидроударе может достигать нескольких тысяч атмосфер).
Использование перепада высот в нагнетательной трубе гидротарана.
а — с начальным горизонтальным участком; б — с равномерным уклоном; в — с уклоном в начале трубы; г — с вертикальным разгоном потока.
На рисунке показаны различные варианты организации уклона в нагнетательной трубе.
a — с начальным горизонтальным участком; это наименее эффективный вариант, потому что на начальном участке трубы действует лишь минимальный напор, а затем жидкость там разгоняется за счёт всасывающего действия, оказываемого водой, ускоряющейся на наклонном участке в конце трубы (в свою очередь тормозя её);
б — с равномерным уклоном; перепад высот и напор возрастают постепенно на всей длине трубы — жидкость ускоряется более эффективно, чем в предыдущем случае, но на начальном участке напор очень мал;
в — с уклоном в начале трубы; здесь на всём протяжении горизонтального участка действует максимальный перепад высот и максимальный напор, однако на начальном участке напор меньше;
г — с вертикальным разгоном потока; максимальный перепад высот и максимальный напор действуют на максимально длинном участке трубы — это наиболее эффективный вариант, особенно при небольшом располагаемом перепаде высот.
Таким образом, наиболее эффективным решением является следующее: как можно быстрее получить максимальный напор и затем использовать его на оставшемся горизонтальном участке трубы (вариант г). Но если уровень воды над входным отверстием не слишком высок, то интенсивное заполнение нагнетательной трубы (особенно в начале работы, пока она пуста и ничто не тормозит вливающуюся туда воду) может привести к образованию воронки и засасыванию в горизонтальный участок трубы значительного количества воздуха, которому потом будет не так просто покинуть нагетательную трубу. Между тем этот воздух — отличный амортизатор, он способен снизить скачок давления при гидроударе до совершенно незначительной величины. Поэтому может быть предпочтителен вариант в, где разгон потока при заполнении трубы слабее и захват воздуха менее вероятен. Главное, чтобы в рабочем режиме гидротарана отбой жидкости не выходил за пределы нижнего горизонтального участка. Впрочем, следует заметить, что после первого заполнения трубы и начала работы гидротарана движения жидкости становятся гораздо менее интенсивными, и захват нового воздуха становится менее вероятным. Зато захваченный ранее воздух постепенно покинет нагнетательную трубу через вход, выход, либо напорную ветвь.
В случае небольшого перепада высот и относительно длинного горизонтального участка может быть целесообразно не изгибать нагнетательную трубу, а сделать возле её входа накопительное углубление необходимой глубины и уложить прямую трубу горизонтально.
Гидравлический таран с горизонтальной нагнетательной трубой.
В этом случае минусом будет несколько меньшая длина трубы и, соответственно, меньшая длительность стадии сжатия гидроудара. Однако эта потеря обычно не слишком велика: при перепаде высот 50 см и длине трубы 10 м она составит лишь 5%. Зато плюсов гораздо больше. Во-первых, нет необходимости изгибать трубу или искать подходящее колено. Во-вторых, даже при мелководном источнике относительно большая глубина возле входа в трубу позволяет не беспокоиться о подсосе воздуха во время работы гидротарана — слой воды над входом обычно достаточно велик и препятствует засасыванию воздуха в трубу, а благодаря большому сечению накопителя скорость поверхностных слоёв будет не настолько велика, чтобы увлечь за собой воздух. Единственное замечание — если накопитель выкопан в грунте, то он должен иметь достаточно большой объём, существенно превышающий рабочий объём нагнетательной трубы, иначе в процессе работы возможны сильные колебания уровня и размыв неукреплённых стенок накопителя при нагнетающем и отбойном движении воды. Прочная облицовка стенок также снимет эту проблему.
Также для предотвращения захвата воздуха через входное отверстие при низком уровне жидкости можно использовать ещё два технических решения — крышку-направляющую и воронкообразный входной участок трубы переменного сечения.
Предотвращение захвата воздуха через входное отверстие при низком уровне жидкости.
а — простейшая крышка; б — обтекаемая крышка-направляющая; в — воронкообразный входной участок трубы.
Простейшим вариантом крышки-направляющей является круглая пластина, диаметр которой в несколько раз превышает диаметр входного отверстия и которая размещена над ним по центру таким образом, что площадь сечения между краем отверстия и нижней стороной пластины не меньше внутреннего сечения трубы. В этом месте скорость потока будет максимальна и равна скорости в трубе. Однако по мере удаления от входного отверстия площадь сечения будет увеличиваться пропорционально этому удалению, а скорость потока и его способность к захвату воздуха — соответственно снижаться. В результате область с наибольшей скоростью потока, где может образоваться захватывающая воздух воронка, закрыта пластиной, а там, где имеется контакт с воздухом, скорость потока ещё мала. Ну и, конечно, более обтекаемые формы края входного отверстия и центра крышки, способствующие формированию и направлению потока, только приветствуются.
Другим вариантом является воронкообразное расширение входа в нагнетательную трубу. Оно работает по тому же принципу: в зоне контакта жидкости с воздухом за счёт большого сечения скорость потока невелика и захват воздуха маловероятен. А уменьшение сечения и ускорение потока происходит на глубине, где атмосферный воздух уже отделяет достаточный слой воды.
И ещё одно замечание: в соответствии с рекомедациями Виктора Шаубергера, подтверждёнными опытом, создание спиральных направляющих у входного отверстия в сторону естественного закручивания воды в воронке способствует организации наиболее эффективного потока и его быстрейшему продвижению в трубу. Но, конечно, важно соблюдать меру — не надо городить спиральные каналы, пытаясь заставить воду двигаться в строго заданных рамках, вполне достаточно просто подсказать ей путь неглубоким спиральным рельефом на ограничивающих поток поверхностях, а ещё лучше просто организовать тангенциальную подачу воды во входную воронку!
Нужен ли отрыв потока?
Как известно, сильный гидроудар сопровождается последующим отрывом жидкости от заслонки и временным образованием там вакуума. Является ли этот эффект необходимым для работы гидротарана или, может быть, он способен снизить его эффективнось?
При подъёме воды на относительно небольшую высоту сила гидроудара может быть и недостаточной для образования отрыва жидкости от отбойного клапана. Поскольку в открытом состоянии такой клапан обычно удерживается пружиной, отрегулированной так, чтобы преодолевать статический напор в нагнетательной трубе, после завершения этапа сжатия эта пружина всё равно откроет отбойный клапан для нового рабочего цикла. Однако при этом пружине придётся приводить в движение не только сам клапан, но и жидкость, заполняющую нагнетательную трубу. В результате открытие клапана будет медленным, а бесполезная утечка воды в это время — значительной.
Наоборот, вакуум, образовавшийся в зоне отрыва у отбойного клапана, способствует скорейшему закрытию напорного клапана и открытию отбойного, который при достаточно сильном отрыве как бы «всосётся» движущейся вспять жидкостью. А поскольку чем сильнее гидроудар, тем больше длительнось стадии отрыва, то времени на полное открытие отбойного клапана может быть вполне достаточно.
Возникает вопрос: а можно ли создать отбойный клапан вообще без пружины, чтобы он открывался самим вакуумом, возникающим при отрыве жидкости? Теоретически можно, если тщательно рассчитать параметры рабочего гидроудара, также форму и массу клапана, чтобы обеспечить необходимую инерционность при последующих гидроударах и дать возможность части потока пройти через отбойный клапан до того, как он снова захлопнется. Очевидно, тут не обойтись без обтекателя, не позволяющего вернувшемуся потоку сразу захлопнуть отбойный клапан своим фронтом под воздействием скоростного напора — если это произойдёт, отбойный клапан не даст потоку в нагнетательной трубе получить дополнительное ускорение и, по сути, всё сведётся к затухающему гидроудару в трубе с неподвижной заглушкой. Пружина отбойного клапана как раз и обеспечивает утечку жидкости, разгоняющую нагнетательный поток до прежней скорости. А клапан без пружины, даже если и заработает, то будет очень чувствителен к параметрам потока и потому слишком капризным; да и запустить его будет не так просто, как «классический» пружинный.
Подводя итог, можно сказать, что отрыв жидкости от отбойного клапана не является обязательным условием для работы гидравлического тарана, но он может существенно повысить эффективность его работы и снизить непроизводительные потери воды через отбойный клапан. Однако слишком сильный отрыв безусловно вреден — область разрежения у открывшегося отбойного клапана заполнится воздухом, попавшим туда через этот клапан со сливного конца нагнетательной трубы, а это ухудшит условия разгона потока в нагнетательной трубе для повторного гидроудара. Кроме того, большой отрыв жидкости означает очень высокое давление нагнетения, обычно намного превышающее напор, необходимый для нужной высоты подъёма. Такое давление приводит к тому, что существенная часть энергии тратится на бесполезный излишний разгон воды, проходящей через напорный клапан, и потому снижает эффективность работы установки.
Зачем гидротарану воздушный колпак?
В минимальном описании гидротарана воздушный колпак не упоминается, однако практически все реальные конструкции снабжены этим узлом. В чём же здесь дело? Неужели всегда так важно сглаживать пульсации нагнетаемой жидкости, причём именно в самом начале её пути — сразу после напорного клапана? Давайте разберёмся.
Расчёт работы гидротарана без воздушного колпака
Гидроудар в нагнетательной трубе гидротарана классической конструкции после открытия напорного клапана представляет собой гидроудар с боковой утечкой. Однако, если напорный клапан расположен непосредственно возле отбойного клапана (а именно так его надо располагать, чтобы использовать максимальную длительность стадии сжатия), то можно рассматривать это как более удобный для расчёта гидроудар с торцевой утечкой.
Предположим, что нагнетательная труба изготовлена без швов из стали толщиной 5 мм, имеет внутренний диаметр 10 см и длину 10 м, а напор (перепад уровней между началом и концом трубы) — чуть более 1 м (гидростатическое давление 0.01 МПа). Отбойный клапан отрегулирован на закрытие при скорости потока 1 м/с.
В случае гидроудара без утечек по формуле Жуковского длительность гидроудара составит почти 15 мс, а скачок давления при остановке потока будет равен 1.34 МПа (13.2 атм).
Предположим, что проходное сечение напорного клапана в 25 раз меньше внутреннего сечения нагнетательной трубы (это соответствует диаметру клапана в 2 см). Также предположим, что нам надо поднять воду на 10 м от уровня напорного клапана (9 м от уровня питающего резервуара). При этом напорная труба подключена непосредственно к напорному клапану без воздушного колпака и имеет внутренний диаметр, соответствующий проходному сечению напорного клапана (тоже 2 см). В целях наименьшего гидравлического сопротивления длину напорной трубы выберем максимально короткой, разместив её вертикально — это будут именно те 10 метров, на которые надо поднять воду. При этом обратный напор такого столба воды будет равен 98 кПа (чуть менее 1 атм).
Если поток пройдёт напорный клапан с той же скоростью, с которой он двигался в нагнетательной трубе, то остаточная скорость в нагнетательной трубе на этапе сжатия будет 1 / 25 = 0.04 м/с. Поэтому скачок давления при гидроударе снизится до 1.29 МПа (сразу скажу, это неверный ход рассуждений, почему — станет ясно в следующем абзаце; но пока попробуем действовать так — «по-простому»).
Считая, что клапаны срабатывают мгновенно, примем следующие параметры этапа сжатия: давление на входе напорной трубы — 1.2 МПа, длительность — 15 мс. Пока напорная труба пуста, статического противодействующего давления нет, но и когда она заполнена полностью, оно не превышает 98 кПа. Таким образом, можно смело считать, что рабочая разность давлений на входе и выходе напорной трубы будет не менее 1.1 МПа. Выполним для этих параметров расчёт заполнения стальной напорной трубы с помощью программы SiP. В результате получим, что за 15 мс этапа сжатия первого гидроудара вода успеет продвинутся по напорной трубе на 0.63 м, т.е. в напорную трубу, площадь сечения которой равна 3.14 см 2 , будет закачано чуть менее, чем 0.2 литра воды. Расчётная скорость потока в напорной трубе в момент закрытия напорного клапана составит чуть менее 38 м/с. Однако такой расчёт неверен — мы исходили из стабильного давления в зоне сжатия, однако оно зависит от расхода воды через напорный клапан: чем больше расход, тем меньше давление. В результате мы получили, что при скорости 38 м/с и выбранном соотношении сечений нагнетательной и напорной труб 25:1 в силу закона непрерывности потока скорость в нагнетательной трубе должна быть 1.5 м/с, т.е. намного больше, чем в момент остановки нагнетающего потока! Поэтому сделанное нами пренебрежение утечкой было бы возможно при соотношении сечений труб, скажем, 1000:1, когда даже высокоскоростная утечка в напорную трубу не сильно влияет на близкую к нулю остаточную скорость в нагнетательной трубе, в любом случае намного меньшую скорости потока в момент остановки. В нашем же случае необходимо делать более тщательный расчёт с учётом обратного влияния утечки через напорный клапан на давление в зоне сжатия нагнетательной трубы и учесть потери давления при резком сужении канала, когда вода переходит из широкой нагнетательной трубы в узкую напорную.
Этот расчёт даёт следующие значения: за 15 мс в напорную трубу будет закачано почти 0.091 литра воды, которые займут чуть менее 29 см её высоты. При этом в момент закрытия напорного клапана и окончания этапа сжатия первого гидроудара скорость воды в напорной трубе составит 19 м/с, а остаточная скорость в нагнетательной трубе — 0.76 м/с.
Отметим, что остаточная скорость слишком велика, и этот гидроудар следует рассматривать как гидроудар с большой утечкой. По окончании этапа сжатия первичного гидроудара вода в нагнетательной трубе всё ещё продолжает двигаться вперёд, поэтому в нашем случае задний фронт такого гидроудара получается не резким, а относительно плавным. Оценочный расчёт показывает, что за это время в напорную трубу, постепенно замедляясь, поступит как минимум ещё столько же воды. Наконец, отбойный клапан откроется, а напорный закроется, и нагнетательный поток вновь начнёт набирать скорость. Когда именно это произойдёт, зависит от особенностей конструкции отбойного клапана — ведь в зависимости от организации потока через клапан могут потребоваться совершенно разные усилия его пружины.
С помощью программы SiP рассчитаем время, которое пройдёт до начала следующего гидроудара, предполагая, что отбойный клапан откроется при остаточной скорости нагнетательного потока 0.5 м/с. До начала следующего удара этот поток снова должен разогнаться до скорости 1 м/с. Расчёт показывает, что это произойдёт примерно через 0.55 с.
За это время в напорной трубе попавшая туда жидкость сначала по инерции продвинется ещё немного вверх (примерно на 20–30 см за 30–40 мс), а затем вернётся обратно к напорному клапану. В результате через 0.15—0.2 с после закрытия напорного клапана вся закачанная вода соберётся возле него в нижней части напорной трубы и достаточно успокоится.
Таким образом, при открытии напорного клапана во время следующего этапа сжатия, возле него будет около 60 см относительно неподвижной воды, которую необходимо потеснить при закачке новой порции. Поэтому при тех же параметрах второго гидроудара в напорную трубу дополнительно попадёт почти вдвое меньше воды — лишь 0.05 литра, а высота её столба там достигнет 75 см. После третьего гидроудара уровень в напорной трубе поднимется до 88 см, после четвёртого — 100 см, пятого — 111 см.
При этом в соответствии с возрастающим сопротивлением остаточная скорость в нагнетательной трубе уменьшается, и через несколько тактов после стадии сжатия уже будет наступать стадия разрежения с выраженным отбоем воды.
Наконец, после нескольких десятков гидроударов все 10 метров напорной трубы будут заполнены и вода начнёт поступать на нужную нам высоту. При этом расчёт для постоянного давления с помощью программы SiP показывает, что за один этап сжатия (напомню, длительность 15 мс при разности давлений 1.2 МПа) из напорной трубы будет выходить лишь 3.9 мл (да-да, менее 4 кубических сантиметров, продвижение по напорной трубе при этом составит 12.5 мм). Правда, в этот момент скорость жидкости в этой трубе составит более 1.64 м/с, что при изначально полной трубе привело бы к выплёскиванию по инерции ещё почти 38 мл за 0.15 с и уменьшило бы уровень в напорной трубе на 12 см. Но ведь при следующем такте, прежде чем выплеснуться наружу, надо сначала пройти и заполнить этот пустой участок, так что оставим прежнюю оценку производительности — 4 мл за такт. Кстати, поскольку здесь скорость в напорной трубе невысока, остаточная скорость в нагнетательной трубе будет во много раз меньше скорости потока в начале гидроудара, и потому расчёт в приближении постоянного давления в зоне сжатия может быть допустимым. Уточнённый расчёт даёт примерно те же цифры.
После выхода на рабочий режим скорость обратного движения воды в нагнетательной трубе на этапе отбоя составит 1 – 2 · 0.07 = 0.86 м/с. Расчёт показывает, что при давлении на входе 0.01 МПа (напор 1 м) такой поток способен отойти от отбойного клапана на 34 см за 0.81 с и затем практически через такое же время вернуться обратно со скоростью 0.81 м/с (предполагается, что подпружиненный обратный клапан открывается сразу же, как только поток начинает отходить назад, поэтому через него свободно проникает воздух, и вакуума не образуется; если же клапан останется закрытым, то поток отойдёт лишь на 3.3 см и затратит на это в 10 раз меньше времени). Считая, что открытый отбойный клапан не вносит сколько-нибудь существенного гидравлического сопротивления, ещё 0.23 с потребуется, чтобы снова набрать необходимую для закрытия отбойного клапана скорость 1 м/с (при доразгоне потока через отбойный клапан уйдёт 1.6 литра воды). Полное расчётное время между двумя этапами сжатия после выхода на рабочий режим — 1.85 с. Таким образом, полная длительность одного такта работы нашего гидротарана составит чуть менее 2 с.
М-да, производительность получилась, мягко говоря, небольшой: на закачивание одного литра потребуется примерно 250 тактов, что при длительности одного такта около 2 секунд займет более 8 минут. Соответственно, 10-литровое ведро будет наполняться часа полтора. При этом расход воды через отбойный клапан составляет 1.6 л/такт, т.е. около 400 литров на один поднятый литр или 4 м 3 на каждое поднятое ведро! Но ведь за первый такт вода продвинулась по напорной трубе не на сантиметр с четвертью, а около 60 см — в 50 раз больше! В чём же дело?
А дело в том, что в этой конструкции при каждом рабочем гидроударе большая часть его энергии тратится не на закачку жидкости, а на очередной разгон несжимаемого 10-метрового столба воды в напорной трубе! Есть ли выход? Есть, и целых два.
Первый способ заключается в настройке параметров всего устройства так, чтобы повторные циклы гидроудара, который возникает также и в напорной трубе благодаря «прыгающему» водяному столбу, согласовывались с основным гидроударом в нагнетательной трубе таким образом, чтобы напорный клапан открывался именно в тот момент, когда водяной столб в напорной трубе совершает повторный «прыжок» вверх. Тогда энергия нагнетающего гидроудара будет попадать в резонанс и потратится не на разгон этого столба, а лишь на поддержание и небольшое увеличение его скорости, а это увеличит эффективность нагнетания в разы. Однако очевидно, что такая настройка является весьма нетривиальной задачей, а любое изменение условий, в том числе давления в питающем и приёмном резервуарах или даже наклона напорной трубы, не говоря уже о строго заданных длинах и диаметрах труб и параметрах клапанов, снизит эффективность работы до прежних мизерных величин, а если попадёт в противофазу, то будет ещё хуже.
Второй способ заключается в том, чтобы нагнетание осуществлялось в промежуточную ёмкость без необходимости разгона большого количества воды, а оттуда непрерывно, без резких разгонов и торможений, вода поступала бы по напорной трубе на нужную высоту. В этом случае изменение различных условий работы малокритично и обычно компенсируется автоматически. Именно таким резервуаром и является воздушный колпак.
Расчёт работы воздушного колпака
Воздушный колпак обеспечивает поступление жидкости из нагнетательной трубы без необходимости разгона всего водяного столба в напорной трубе на каждом такте работы насоса. Именно в этом и заключается его основная функция, и именно поэтому он в том или ином виде присутствует практически во всех конструкциях гидравлических таранов — ведь в отличие от несжимаемых жидкостей, воздух, как и другие газы, отлично сжимается, и способен принять в свой объём достаточно большое количество жидкости без существенного изменения давления. Вторая функция — обеспечение плавной и постоянной подачи воды по напорной трубе — является «бесплатным приложением» к его основной задаче.
Какие условия предъявляются к воздушному колпаку?
Во-первых, давление в воздушном колпаке должно не просто поднять воду на необходимую высоту, но и сделать это достаточно быстро — вся вода, поступившая в очередном такте нагнетения, должна успеть покинуть колпак до следующего открытия напорного клапана. Впрочем, это условие обычно выполняется автоматически — если давление слишком мало, объём воды в колпаке начинает увеличиваться, соответственно находящийся там воздух сжимается сильнее, давление растёт и вода начинает выталкиваться в напорную трубу более интенсивно. И наоборот, если давление вдруг будет слишком большим, оно будет выталкивать наверх больше воды, чем её поступает за очередной такт, поэтому вода в колпаке будет убывать, объём воздуха станет увеличиваться, а его давление — падать. В результате скорость подачи воды в напорную трубу также автоматически снижается. Идеальная конструкция!
Во-вторых, объём воздуха в колпаке при рабочем давлении должен быть достаточно велик, чтобы закачивание рабочей порции воды на очередном такте не вызывало слишком большого повышения давления. Если принять допустимые пульсации давления 50%, то объём воздуха должен быть вдвое больше объёма порции закачки, для пульсаций в 10% эти объёмы должны соотносится как 10:1, а для 5% — 20:1. Слишком большое повышение давления снизит эффективность накачивания и потребует дополнительного упрочнения самого воздушного колпака. Если же пульсации давления невелики, то воздушному колпаку достаточно выдерживать давление, лишь немного превышающее необходимое для подъёма жидкости на заданную высоту, а оно, как правило, близко к гидростатическому давлению понимаемого столба воды и во много раз меньше давления нагнетательного гидроудара.
Какое же давление в воздушном колпаке необходимо в нашем случае? Давайте рассчитаем его для нескольких значений установившейся скорости подачи — от 10 мл до 1 литра/секунду — по стальной бесшовной трубе длиной 10 м с внутренним диаметром 2 см. Программа SiP не поддерживает расчёт этой величины непосредственно, однако нужные нам значения с погрешностью в переделах 5..10% легко получить подбором параметров. Результаты приведены в таблице.
Скорость подачи
0.01 л/с
0.02 л/с
0.05 л/с
0.1 л/с
0.2 л/с
0.5 л/с
1.0 л/с
Скорость, м/с
Давление
Как видно, за исключением скорости 1 л/с, требующей давления чуть более 3 атм, все остальные скорости достигаются при давлениях, намного меньших 1 атм (101 кПа), а малые расходы вообще требуют лишь считанных паскалей. Поэтому, добавив сюда 98 кПа статического давления в напорной трубе, примем для напорного клапана противодавление в воздушном колпаке равным 0.2 МПа (
Посмотрим, сколько воды может быть прокачано по патрубкам различной длины от напорного клапана внутрь воздушного колпака за время сжатия (15 мс), при условии, что в момент открытия напорного клапана эти патрубки заполнены неподвижной водой.
Длина заполненного патрубка
5 см
10 см
15 см
20 см
25 см
30 см
Скорость в конце, м/с
Продвижение по патрубку, см
Прокачанный объём, мл
Если патрубки изначально пустые, то во всех этих случаях закачанный за один такт объём будет приблизительно одним и тем же (85 мл) при остаточной скорости в нагнетательной трубе0.68 м/с. По сравнению с закачкой без использования воздушного колпака эффективность возросла примерно в 20 раз — с 4 до 80 с лишним миллилитров за каждый такт! Из предыдущей таблицы видно, что избыточное давление, необходимое для подачи этого объёма по напорной трубе из воздушного колпака наверх (напомню, приблизительно за 2 секунды), лишь на сотню-другую паскалей превышает статическое давление столба воды в этой трубе и по отношению к нему составляет доли процента.
Итак, использование воздушного колпака кардинально повышает производительность гидравлического тарана, и чем длиннее напорная труба, тем больше этот выигрыш. Однако и в этом случае необходимо обеспечить как можно меньшую высоту столба воды над напорным клапаном. Более того, желательно вообще отказаться от патрубка между воздушным колпаком и напорным клапаном: в тесной трубе воде некуда деться, кроме как пройти её до конца, поэтому каждый раз мы будем вынуждены разгонять всё, что уже есть в трубе. Если же напорный клапан открывается сразу в относительно свободное пространство воздушного колпака, то вода там может «подвинуться» не только вверх, но и в стороны (конечно, при этом уровень всё равно повысится, но скорость этого перемещения относительно мала, а следовательно, меньше и необходимая для него кинетическая энергия, и вызванные этим потери).
Сколько нужно прочности?
Расчёты показывают, что даже при вполне разумных скоростях потока воды скачок давления при гидроударе весьма велик. Так, гидравлический удар в стальной трубе при скорости потока1 м/с может вызывать скачок давления до 15 атм, при скорости потока 3 м/с — более 40 атм, а при скорости 10 м/с — почти 150 атм. Для сравнения, рабочим давлением в водопроводах многоэтажных зданий по западным стандартам считается 4..6 атм, предельным — 8 атм (в небоскрёбах через каждые 10-15 этажей специально предусматривается техническое помещение, где насосы поднимают воду на следующую «ступень», чтобы избежать слишком большого давления на нижних этажах). В России рабочее давление может достигать 10 атм, опрессовка обычно проводится давлением, вдвое превышающем рабочее — до 20 атм. Очевидно, что даже остановка потока со скорости 3 м/с уже вызывает давление, существенно превышающее стандартные рабочие давления для водопроводных труб, а потому требует специального расчёта прочности, чтобы трубу не разорвало первым же рабочим гидроударом (впрочем, оговорюсь: обычно предполагается, что скорость потока в водопроводных трубах может достигать как раз 3 м/с, и при их изготовлении прочность рассчитывается именно для гидроударов с такой скоростью потока — это примерно 50 атм; однако в пластиковых трубах жёсткость стенок и, следовательно, скачок давления при гидроударе, заметно меньше, чем в стальных, а потому и предельное давление для «пластика» также может быть меньше).
Как же рассчитать прочность? Очень просто: достаточно сравнить силу, пытающуюся разорвать материал трубы, с пределом прочности на растяжение этого материала, умноженным на площадь сечения стенки трубы, то есть условием разрыва будет
где FР — разрывающая сила; pP — предел прочности материала; SСТ — площадь сечения стенки трубы; l — длина трубы; d — толщина стенки трубы.
Для круглой трубы разрывающая сила определяется её внутренней площадью и внутренним давлением:
FР = P · SВ = P · l · π · D (1.2),
где FР — разрывающая сила; P — давление внутри трубы; SВ — площадь внутренней поверхности трубы; l — длина трубы; D — внутренний диаметр трубы.
Отсюда следует условия выбора толщины стенки для обеспечения необходимой прочности трубы и выбора предельного давления для заданной толщины стенки
d > P · π · D / pP ; P
где d — толщина стенки трубы; P — давление внутри трубы; D — внутренний диаметр трубы; pP — предел прочности материала на растяжение.
В таблице указаны рассчитанные по этой формуле предельные давления для различных труб.
Диаметр и
толщина стенки трубы →
Материал стенки трубы ↓
0.6 см
0.5 мм
0.6 см
1 мм
1.2 см
1 мм
1.2 см
3 мм
2.5 см
1 мм
2.5 см
3 мм
5 см
1 мм
5 см
3 мм
5 см
5 мм
10 см
1 мм
10 см
3 мм
10 см
5 мм
20 см
3 мм
20 см
10 мм
Алюминий
Латунь, бронза
ПВХ жёсткий неармированный
Полипропилен неармированный
Полиэтилен неармированный
Сталь
Чугун
Следует учитывать, что здесь указаны значения для идеального качества изготовления. В реальных условиях необходимо закладывать как минимум двукратный запас прочности, а с учётом постоянных ударно-вибрационных нагрузок нелишним будет перестраховаться на порядок! В соответствии с формулой (1.3) с ростом толщины стенки при неизменном диаметре предельное давление растёт по линейному закону, а с ростом диаметра трубы при неизменной толщине стенок — снижается по тому же закону.
Теоретический расчёт гидравлического тарана
До сих пор мы оценивали параметры работы гидротарана с использованием численных методов. Это удобно, наглядно, но требует наличия современного компьютера и соответствующего программного обеспечения (или навыков программирования). Однако, как было сказано выше, существуют и теоретические методы расчёта, разработанные ещё в 1930 году профессором С.Д.Чистопольским, которые позволяют обойтись только ручкой и листом бумаги (тем, кто отвык считать вручную, ещё понадобится простейший калькулятор, в 1930-е годы существоваший в виде механического арифмометра).
Формулы Чистопольского для расчёта гидравлических таранов
Главный параметр гидротарана — это объём (или масса) воды, закачиваемой за один такт (гидроудар). Для этого профессор Чистопольский рекомендовал следующую формулу, в которой фигурируют наиболее легко измеряемые на практике величины (я использую современные общефизические обозначения):
где mН — масса жидкости, нагнетённой за 1 такт; mТ — общая масса жидкости в нагнетательной трубе; v — скорость жидкости в нагнетательной трубе в момент начала гидроудара; vК — скорость жидкости в нагнетательной трубе в момент окончания закачки, определяемая по формуле (2.2); с — скорость распространения ударной волны в трубе; ρ — удельная плотность жидкости; S — площадь сечения нагнетательной трубы; L — общая длина нагнетательной трубы.
Поскольку жидкости несжимаемы, то точно такая же формула связывает и нагнетаемый за один такт объём VН с общим объёмом нагнетательной трубы VТ:
Необходимо предостеречь от неправильного понимания того, что в данном случае имеется в виду под скоростью в конце закачки vК. Это не остаточная скорость v2 во время стадии сжатия, упоминавшаяся при рассмотрении гидроудара с утечкой, а скорость отбойного движения жидкости в начале стадии разрежения (с соответствующим знаком). Таким образом, её можно определить как разность исходной скорости гидроудара v и двойной потери скорости при гидроударе (той, что вызвала скачок давления):
где vК — скорость жидкости в нагнетательной трубе в момент окончания закачки; v — скорость жидкости в нагнетательной трубе в момент начала гидроудара; v2 — остаточная скорость жидкости в нагнетательной трубе в конце стадии сжатия при гидроударе с утечкой.
В этом случае результаты при крайних условиях соответствуют ожидаемым — если напорный клапан не откроется, то мы будем иметь дело с простым гидроударом в трубе с глухой заглушкой, тогда vK = –v, и объём закачанной жидкости равен нулю (то есть не закачано ничего, как это и имеет место в действительности). Наоборот, если жидкость проходит в воздушный колпак без какого-либо ограничения и сопротивления, то vK = v, и в этом случае формула (2.1′) просто даёт объем воды, проходящей через выбранное сечение трубы за время, соответствующее длительности гидроудара (tc = 2 · L / c); правда, собственно гидроудара в этом случае фактически не происходит.
Чтобы узнать, какая доля жидкости из нагнетательной трубы будет закачана в воздушный колпак за один такт (гидроудар), формула (2.1) может быть преобразована к следующему виду.
где k — доля жидкости, нагнетённой за один такт (массовая или объёмная); mН — масса жидкости, нагнетённой за 1 такт; mТ — общая масса жидкости в нагнетательной трубе; VН — объём жидкости, нагнетённой за 1 такт; VТ — общий объём жидкости в нагнетательной трубе; v — скорость жидкости в нагнетательной трубе в момент начала гидроудара; vК — скорость жидкости в нагнетательной трубе в момент окончания закачки, определяемая по формуле (2.2); с — скорость распространения ударной волны в трубе.
Применимость формулы Чистопольского
Следует отметить, что формулы Чистопольского применимы при нагнетании воды по короткому патрубку в воздушный колпак, когда использованная им линейная аппроксимация скорости закачки, неизменная в течение всей длительности гидроудара, вполне правомерна. В случае, если нагнетание идёт в достаточно длинную трубу (длиннее 5..10 диаметров), и особенно если эта труба уже заполнена жидкостью, которую придётся разгонять, эти формулы могут дать слишком большое расхождение с действительностью, поскольку нелинейный характер изменения скорости в таких случаях может быть уже слишком заметным, и чем жёстче условия (выше скорость потока), тем больше проявляется эта нелинейность, тормозящая закачку. В случае пустой напорной трубы оценка по Чистопольскому может быть немного занижена, а в случае заполненной неподвижной жидкостью — завышена, причём иногда весьма существенно.
Кроме того, в этих формулах жёстко «зашита» стандартная длительность гидроудара. Но в случае гидроудара с большими утечками он как бы «размазывается» и его фактическая длительность существенно увеличивается. В связи с этим формулы Чистопольского могут очень сильно (в десятки раз!) занизить объём закачки для таких условий. Между тем численные методы расчёта показывают, что при подъёме на небольшие высоты, когда не требуется слишком высокое давление у напорного клапана, именно такой режим гидроудара является наиболее эффективным (сечение напорного клапана в этом случае лишь немного меньше сечения нагнетательной трубы, либо нагнетательная труба сделана из достаточно эластичного материала).
При расчёте воздушного колпака мы уже выполняли расчёт численными методами, проверим теперь его в соответствии с теорией С.Д.Чистопольского. Итак, в нашем случае площадь сечения трубы S = π · (0.05) 2 = 7.85·10 –3 м 2 , длина трубы L = 10 м, плотность воды при 20°С ρ = 999 кг/м 3 , исходная скорость v = 1 м/с и скорость при окончании закачки vК = 2 · 0.68 – 1 = 0.36 м/с,скорость ударной волны в трубе с = 1340 м/с (стальную стенку 5 мм при диаметре трубы 10 см можно считать относительно тонкой, поэтому скорость ударной волны заметно меньше скорости звука в воде).
В результате расчёта по формуле (2.1) получаем 0.080 кг, то есть 80 мл воды. Это достаточно близко к нашей численной оценке (85 мл), тем более, что в гидродинамике во многих случаях ошибка расчёта на 10..20% — это хорошая точность, а зачастую и погрешность в 50% может считаться очень неплохим результатом. Слишком много там факторов, которые трудно учесть полностью, а их влияние, само по себе небольшое, при сложных многоступенчатых расчётах может накапливаться! ♦
Явление гидравлического удара
Гидравлический удар представляет собой кратковременное, но резкое и сильное повышение давления в трубопроводе при внезапном торможении двигавшегося по нему потока жидкости. Как правило, это явление возникает при заполнении трубопроводов, когда воздух успевает выйти через специально открытый кран, но сечения этого крана не хватает, чтобы пропустить весь поток внезапно достигшей его несжимаемой жидкости. Такой же эффект возникает и при быстром закрытии вентиля, резко перекрывающего поток. Последнее особенно актуально в наши дни, когда старые винтовые кран-буксы, поневоле закрывавшиеся плавно (ведь крутить маховичок надо много оборотов, и потому шток перекрывает просвет вентиля достаточно медленно), заменяются современными шаровыми кранами, «перерезающими» поток всего за четверть оборота одним движением руки.
Однако гидроудары не обязательно распространяются на всю трубу. При возникновении кавитации, каждое схлопывание кавитационного пузырька сопровождается микро-гидроударом. Таким гидроударам не под силу разрушить всю трубу, однако их длительное разрушительное действие в зоне кавитации легко может превысить ущерб от мощных, но относительно редких гидроударов.
Явление гидравлического удара может быть не только разрушительным, но и созидательным — например, именно с его помощью мирно поднимают воду необычные устройства под названием «гидравлический таран».
В любом случае, как для нейтрализации, так и для использования гидроудара, необходимо не только понять его природу, но и рассчитать его параметры. Этим мы и займёмся. В отличие от традиционного гидродинамического подхода, где обычно оперируют напором (по сути, это псевдоним давления), здесь это явление будет рассматриваться с общефизической точки зрения, и давление будет фигурировать без всяких псевдонимов.
Описание явления
Более-менее заметно гидравлический удар проявляется только в жёстких трубопроводах при большой скорости потока. Он происходит тогда, когда движущаяся с некоторой скоростью жидкость вдруг встречает на своём пути жёсткое препятствие, которым, как правило, бывает заслонка или заглушка. В подобной ситуации пресловутый cтальной шарик в вакууме просто отскочил бы от встретившейся стенки обратно с той же скоростью, с которой подлетел к ней. Однако жидкость — не шарик, да и вокруг не вакуум, а жёсткие стенки, а сзади напирают следующие порции, которые ещё «не знают», что впереди прохода нет! В результате жидкость останавливается, а её кинетическая энергия превращаются в потенциальную — потенциальную энергию упругого сжатия жидкости (ведь жидкости считаются несжимаемыми лишь по сравнению с газами, а на самом деле сжимаются примерно в той же степени, что и твёрдые тела с кристаллической структурой), а также потенциальную энергию упругого (а если не повезёт — то и пластического, то есть необратимого) растяжения стенок трубы. Всё это приводит к тому, что давление в месте остановки стремительно возрастает, тем больше, чем выше была скорость жидкости и чем меньше её сжимаемость, а также чем выше жёсткость трубы. Это повышение давления и является гидравлическим ударом внезапно остановленной жидкости.
Фазы развития гидроудара
Как же развивается явление гидроудара? Рассмотрим самый простой пример — внезапное заполнение жидкостью пустой трубы постоянного сечения, погружённой на некоторую глубину. Один конец этой трубы закрыт жёсткой заглушкой, а другой свободно сообщается с окружающей жидкостью. Кстати, практически то же самое будет, если рассматривать резкое перекрытие установившегося потока в такой же трубе, только там будет отсутствовать первая фаза — заполнение пустой трубы, — а роль заглушки будет играть перекрывшая трубу заслонка.
№ фазы | Название фазы | Описание фазы |
1 | Заполнение трубы | Под действием внешнего давления жидкость заполняет трубу, при этом в соответствии с законом Бернулли её давление несколько меньше давления неподвижной среды вне трубы. |
2 | Встреча с препятствием | Жёсткая заглушка внезапно останавливает поток, который ударяется в неё. Однако практически вся жидкость в трубе ещё продолжает своё движение вперёд. |
3 | Рост зоны повышенного давления | Головная часть потока остановилась и её кинетическая энергия перешла в потенциальную энергию упругой деформации жидкости и стенок трубы, вызвав в этой области повышение давления. Но до «хвоста» потока это воздействие ещё не дошло, и там жидкость продолжает двигаться в прежнем направлении. Граница области повышенного давления (ударная волна) перемещается от заглушки ко входу трубы, при достаточной жёсткости трубы эта скорость практически равна скорости распространения упругих колебаний в среде, т.е. скорости звука в жидкости. |
4 | Максимум повышенного давления | Ударная волна достигла входа трубы и вышла в неподвижную среду. Поскольку внешняя среда неподвижна относительно стенок трубы, она уже не добавляет свою кинетическую энергию и не оказывает существенного сопротивления сжатой жидкости в трубе, и та начинает двигаться из зоны повышенного давления наружу. Кроме того, в свободной среде стенки трубы уже не ограничивают и не «фокусируют» ударную волну, так что она распространяется во все стороны, быстро теряя силу. Таким образом, достигнув входа трубы, ударная волна «рассеивается» и «гаснет». Более подробно этот момент рассмотрен ниже. |
5 | Начало обратного движения | Поскольку у входа в трубу давление относительно невысоко, сжатая жидкость двигается туда под действием повышенного давления внутри трубы. При этом потенциальная энергия упругой деформации снова превращается в кинетическую энергию, но движение уже направлено в обратную сторону. В результате граница зоны неподвижной жидкости под повышенным давлением перемещается от входа в трубу обратно к заглушке, оставляя у входа зону немного пониженного давления, в которой жидкость движется обратно ко входу трубы. Скорость перемещения этой границы в случае достаточно жёсткой трубы также равна скорости распространения упругих деформаций в среде, т.е. скорости звука в жидкости, однако перепад давления на границе не такой резкий, как при распространении ударной волны — зона границы существенно шире. Причиной этого являются особенности процесса рассеивания ударной волны у входа в трубу на предыдущей фазе. При падении давления вся потенциальная энергия упругой деформации снова переходит в кинетическую энергию жидкости (за вычетом неизбежных потерь, которые могут быть весьма малы), поэтому скорость «разряженной» жидкости почти равна её скорости до остановки, только направлена теперь в сторону входа. |
6 | Окончание сжатия | В момент, когда граница зоны пониженного давления достигает заглушки, во всей трубе жидкость снова испытывает пониженное давление и движется обратно ко входу со скоростью, равной скорости потока в трубе в фазе 2. |
7 | Фаза разрежения (отрыва) | Двигаясь в сторону входа трубы, жидкость в силу инерции стремится оторваться от заглушки. Поэтому, если гидроудар был достаточно сильным, то возле заглушки образуется зона разрежения, где жидкость отсутствует и давление близко к нулю (именно вакуум, а не атмосферное давление). Однако жидкость, выходящая из трубы, движется не в пустоту, а в среду, представляющую собой ту же жидкость, только неподвижную. Сопротивление этой среды достаточно быстро затормозит движение жидкости к выходу и вместе с зоной разрежения возле заглушки вновь заставит жидкость двигаться от входа внутрь трубы, тем самым повторяя фазу 1(естественно, уже с меньшей энергией, потери которо й, как всегда, неизбежны). |
При слабом гидроударе жидкости не удаётся оторваться от заглушки, однако всё равно давление существенно снижается относительно давления вне трубы (настолько, насколько оно повысилось в фазе сжатия). В этом случае выделяют фазы распространения отрицательной ударной волны (границы зоны с низким давлением) ко входу трубы и её возвращения обратно под действием внешнего давления, однако при сильном гидроударе с отрывом жидкости от заглушки появляется ещё и фаза «замирания». Впрочем, самостоятельное значение этих фаз не очень велико, поэтому все их я объединяю в одну фазу разрежения. Чутьниже это рассмотрено более подробно.
Факторы, влияющие на силу гидроудара
Эластичные стенки трубопровода значительно снижают силу гидроудара, достаточно легко увеличивая объём трубы или шланга в месте остановки жидкости. Если труба заполнена воздухом и по мере продвижения жидкости он не успевает покинуть трубу с нужной скоростью, это также способно предотвратить сильный гидроудар, поскольку в этом случае воздух играет роль пневматического амортизатора, в котором плавно повышается давление, и потому он оказывает всё большее сопротивление движению жидкости, постепенно замедляя её. Именно эти принципы использует большинство устройств для защиты трубопроводов от гидроударов.
Следует чётко понимать, что эти факторы лишь растягивают процесс гидроудара во времени, но общая энергия гидравлического удара при этом остаётся прежней. Однако за счёт увеличения времени процесса, снижается его мощность, а значит, и максимальное давление, и максимальное усилие, воздействующее на стенки трубы. Но именно это и является целью защиты от гидроудара — ведь теперь трубу уже не разорвёт!
И, конечно, силу гидроудара снижает более плавное перекрытие потока и уменьшение рабочей скорости движения жидкости в трубе (если необходимо сохранить расход, то для этого придётся увеличить диаметр трубы — скорость уменьшится пропорционально увеличению площади её просвета).
Если же силу гидроудара надо увеличить, то тут рекомендации обратные — как можно более жёсткая (и прочная!) труба, как можно более резкое перекрытие потока и как можно больший разгон жидкости перед остановкой потока.
Особенности явления гидроудара
Гидроудар в силу своей природы имеет несколько существенных особенностей, о которых нельзя забывать.
Высокая скорость процесса
Прежде всего, следует учесть высокую скорость процесса. Поскольку скорость перемещения границ зон с различным давлением при высокой жёсткости трубы и заглушки определяется скоростью распространения упругих деформаций в жидкости, т.е. скоростью звука, всё происходит за очень короткое время.
Скорость звука в жидкостях обычно составляет порядка 1000. 1500 м/с (для воды при 4°С — 1.435 км/с, при 45°С 1.51 км/с (максимум), при 100°С — 1.46 км/с), поэтому в трубе с водой длиной 15 метров процесс распространения ударной волны от заглушки до входа или обратно займёт примерно 10 миллисекунд. За это время тело, находящееся в покое, под действием ускорения свободного падения успеет набрать лишь скорость в 9.8 см/сек и пройти путь менее 5 сантиметров. При более коротких длинах эти цифры пропорционально уменьшатся.
Это означает, например, что в горизонтальной трубе за такое время пустота в зоне отрыва не успеет сколько-нибудь существенным образом перераспределиться и останется «сконцентрированной» именно возле заглушки, а не превратится в относительно небольшое снижение уровня жидкости на значительной части длины трубы. Многие другие эффекты, скажем, испарение заметного количества жидкости с границы зоны отрыва в область разрежения и, как следствие, существенное повышение там давления, также не смогут проявиться в полной мере из-за краткости отпущенного им времени.
Условия отрыва жидкости. Сильные и слабые гидроудары
В фазе разрежения отрыв жидкости от заглушки происходит не всегда. Для этого скорость потока должна быть достаточно высокой, а стенки трубы — достаточно жёсткими, чтобы удар получился резким. Если удар окажется слишком слабым (или слишком плавным), то пустой области у заглушки не образуется, хотя в любом случае в фазе разрежения давление внутри трубы, в том числе непосредственно у заглушки, будет меньше, чем давление окружающей жидкости снаружи.
Для того, чтобы жидкость смогла оторваться от заглушки и появилась область отрыва, обратное давление (в идеале, без учёта потерь, равное максимальному повышению давления при сжатии) должно превышать давление среды снаружи. Таким образом, отрыв жидкости с образованием вакуума возможен при выполнении условия
Если пренебречь потерями, то для строго горизонтальной трубы критерий возникновения области вакуума будет ещё проще:
Может возникнуть вопрос: как же повышение давления при гидроударе может превысить давление на входе в трубу? Однако здесь нет парадокса, так как скачок давления зависит лишь от резкости остановки потока и набранной им к этому моменту кинетической энергии, поэтому жёсткая труба и малосжимаемая жидкость могут обеспечить сильный удар даже при не слишком высокой скорости потока.
Таким образом, гидроудары можно разделить на «сильные», когда образуется область вакуума в зоне отрыва, и «слабые», когда мощности удара для этого не хватает. При этом следует помнить, что речь именно о мощности удара, а не о его энергии, поскольку здесь определяющую роль играет резкость остановки.
Повторные циклы
Как уже было сказано выше, после фазы 7 (разрежения) снова следует фаза 1 — пустая (или разреженная) часть трубы снова заполняется жидкостью под давлением. В результате при гидроударе происходит своеобразный колебательный процесс, естественно, довольно быстро затухающий. При этом весьма важно знать, что же является главным фактором для возникновения повторного удара — разгон жидкости, заполняющей пустоту, возникшую при отрыве её от заглушки в фазе разрежения или упругая реакция внешней среды на возмущения, вызванные отбойным движением жидкости от заглушки ко входу в фазах 4–6.
Ответ на этот вопрос определяет, является ли отрыв жидкости от заглушки в фазе 7 необходимым условием возникновения повторных циклов или они будут иметь место даже если отрыва не происходит?
Посмотрим, как при гидроударе с течением времени изменяется давление возле заглушки.
На рисунке видно, что при сильном гидроударе (слева) в фазе отрыва давление падает практически до нуля, т.е. образуется вакуум (0.1 МПа
1 атм, давление измерялось относительно атмосферного, поэтому показания в –1 атм как раз и соответствуют абсолютному нулю давления). Однако это не слишком снижает энергию повторных гидроударов, более того, характер их постепенного ослабления не отличается от аналогичного ослабления при слабом гидроударе, показанном на рисунке справа.
При слабом гидроударе (без отрыва жидкости), фазы сжатия и разрежения имеют одинаковую длительность t, обусловленную временем «путешествия» ударной волны от заглушки ко входу трубы и обратно. В этом случае возмущения не выходят в резервуар сколько-нибудь далеко от входа трубы, и период этих колебаний полностью определяется длиной трубы и скоростью ударной волны.
При сильном гидроударе обратным ходом (отбойной волной) жидкость выбрасывается из трубы с большой силой, и она выходит в резервуар достаточно далеко от входа в трубу, «расталкивая» уже находившуюся там жидкость. В результате этого в трубе возле заглушки освобождается место для зоны отрыва, однако и сила повторного удара обусловлена не только разрежением жидкости в трубе, но и возмущённой жидкостью в резервуаре вокруг входа в трубу. Поэтому повторный удар получается сильным, однако «затишье» между ударами существенно больше длительности каждого удара, поскольку ударная волна выходит далеко за пределы трубы, и этот путь требует дополнительного времени. По мере снижения силы повторных ударов интервал между ними сокращается, и когда скачок давления при очередном повторном гидроударе ΔPуд становится равным давлению вне трубы P, сравнивается с t и в дальнейшем уже не уменьшается.
С точки зрения математики можно сказать, что в каждом цикле гидроудара площади положительного и отрицательного отклонения от уровня давления P на графике P(t) должны быть равны, поскольку они пропорциональны энергии, а без учёта потерь энергия стадии сжатия и стадии расширения должна быть одинаковой. И, так как разрежение не может быть отрицательным, то в случае возникновения отрыва это условие соблюдается за счёт увеличения длительности фазы разрежения. Если же отрыва не возникает, то энергия «регулируется» амплитудой скачка давления, так как теперь «вакуумное ограничение» на стадии разрежения перестаёт действовать.
Таким образом, пренебрегая потерями и считая фронты нарастания и спада давления достаточно резкими (близкими к вертикальным), можно записать условие соотношения длительностей стадий сжатия и разрежения возле заглушки в следующем виде:
Размер имеет значение
С увеличением размеров трубы сила гидроудара значительно возрастает, причём для одного и того же давления у входа в трубу этот рост обычно круче линейной зависимости. Здесь мы рассмотрим качественные причины такого поведения (количественные результаты автоматически следуют из расчётов, приведённых в следующих разделах этой страницы).
Дело в том, что энергия гидроудара определяется его длительностью, зависящей от длины и жёсткости трубы, и мощностью, которая прямо зависит от скачка давления, в свою очередь линейно зависимого от скорости потока в момент остановки. Поэтому при той же скорости потока скачок давления будет тем же, но длительность гидроудара, а значит и его общая энергия, возрастут в соответствии с увеличением длины трубы.
Однако при увеличении линейных размеров масса (и, следовательно, кинетическая энергия при той же скорости) возрастает пропорционально объёму, т.е. кубу их изменения, а потери на трение о стенки трубы — пропорционально площади соприкосновения, то есть квадрату изменения размеров. Таким образом, удельные потери энергии на трение на единицу массы жидкости уменьшаются, и потому при том же движущем усилии (внешнем давлении) скорость потока возрастает, а стало быть, увеличивается и скачок давления в момент остановки.
В результате при одном и том же внешнем давлении мы получаем сильный гидроудар в большой трубе и слабый — в маленькой. При этом слишком большое удлинение трубы без увеличения её диаметра также ослабит гидроудар за счёт того, что возрастающее гидравлическое сопротивление снизит скорость потока к моменту остановки. Отсюда следует вывод, что имеется некоторая оптимальная (или, может быть, наоборот — фатальная) длина трубопровода, при которой гидроудар имеет максимальную силу. При меньшей длине поток не успевает разогнаться до максимальной скорости либо длительность гидроудара получается слишком маленькой, при большей — гидравлическое трение отбирает слишком много энергии у движущегося потока, снижая его скорость до «безопасных» величин. Кроме того, если при увеличении диаметра трубы толщина её стенок не увеличится, то жёсткость, а следовательно, скорость ударной волны и скачок давления при гидроударе снижаются. Правда, на столько же возрастает его длительность, — так что общую энергию гидроудара снижение толщины стенок не уменьшает, а вот шансы разрыва трубы увеличиваются!
Для слишком узких трубок большое значение начинают играть поверхностные эффекты, в том числе поверхностное натяжение. Все они препятствуют разгону потока и потому также снижают силу гидроудара. Чтобы получить в капиллярной трубке сколь-нибудь заметный гидравлический удар, надо сильно постараться!
Расчёт параметров гидравлического удара
Наиболее интересны два параметра гидроудара — во-первых, его мощность (либо степень повышения давления) и, во-вторых, длительность стадий сжатия (фазы 2-6) и расширения (фаза 7), вместе с мощностью определяющих общую энергию гидравлического удара.
Расчёт повышения давления при гидроударе. Формула Жуковского
Повышение давления при гидравлическом ударе рассчитывается по формуле Жуковского:
В свою очередь, скорость распространения ударной волны определяется по формуле:
Следует отметить, что скачок давления при гидравлическом ударе не зависит от исходного давления, заставившего двигаться жидкость по трубе, а зависит только от набранной ею скорости. Это значит, что разгон жидкости относительно высоким давлением в течение короткого времени можно заменить более длительным разгоном под воздействием более низкого давления. Впрочем, бесконечно снижать разгоняющее давление не удастся: во-первых, в реальных условиях напор низкого давления уже при не слишком большой скорости потока весь уйдёт на компенсацию гидравлического трения; во-вторых, даже для сверхтекучей жидкости действует ограничение на максимальную скорость, которой поток может достичь при заданном напоре на входе трубы в соответствии с уравнением Бернулли.
Тем не менее, именно это обстоятельство позволяет гидравлическим таранам поднимать жидкость на высоту, во много раз превышающую приводящий их в действие перепад уровней.
Расчёт длительности стадий сжатия и расширения у заглушки
Расчёт длительности стадий сжатия и расширения будем проводить в предположении, что длина трубы, а следовательно, и время распространения гидроудара по ней, намного больше времени рассеивания ударной волны у входа в трубу. Это справедливо в большинстве случаев, поскольку обычно длина трубы превышает её диаметр в десятки, сотни, а то и тысячи раз. Однако для коротких труб, длина которых сравнима с их диаметром, нельзя не учитывать механизм рассеяния ударной волны у её входа, поскольку в этом случае он может заметно повлиять на длительность стадии сжатия.
Длительность стадии сжатия
Как мы выяснили немного выше, длительность стадии сжатия не зависит от силы гидроудара, а определяется лишь временем распространения ударной волны по трубе, поэтому у заглушки она длится время, необходимое для прохода ударной волны по трубе «туда» и «обратно»:
Длительность стадии расширения
При слабых гидравлических ударах, когда не выполняется условие (1) и отрыва жидкости от заглушки с образованием области вакуума не возникает, длительность стадии разрежения равна длительности стадии сжатия, вычисляемой по формуле (6).
Однако если силы гидроудара достаточно для возникновения отрыва жидкости от заглушки и образования области вакуума, то есть условие (1) выполнено, длительность стадии расширения возрастает в соответствии с соотношением (3) и с учётом формулы (4) она должна рассчитываться как
Таким образом, длительность стадии разрежения при слабом гидроударе помимо длины трубы зависит лишь от скорости ударной волны, а при сильном — уже от его силы.
Расчёт длительности стадий сжатия и расширения в произвольном месте трубы
Картина изменения давления в произвольном месте трубы несколько сложнее, чем показанная на предыдущем рисунке возле заглушки.
Здесь появляются «полочки», уменьшающие длительности экстремальных давлений (как пониженного, так и повышенного) относительно длительности каждого этапа возле заглушки. Они связаны с задержкой, неизбежной при распространении до интересующего нас места трубы возникающей возле заглушки зоны экстремального давления. Очевидно, что по мере приближения к заглушке эти «полочки» будут уменьшаться и совершенно исчезают возле заглушки. Наоборот, по мере приближения ко входу в трубу из резервуара они нарастают, пока в сумме не станут равны tсз (оно же t на рисунках). Таким образом, возле входа в трубу длительность стадии сжатия становится ничтожной, а вот длительность стадии разрежения при условии сильного удара с отрывом жидкости от заглушки будет оставаться вполне заметной.
Длительность «полочки» определяется расстоянием от заглушки и скоростью распространения ударной волны:
Таким образом, длительность стадий сжатия и разрежения в произвольном месте трубы будет рассчитываться по формулам
Не следует думать, что в силу конечного времени нарастания и спада давления (неидеальности фронтов) максимальные усилия на стенки трубы возле её входа будут меньше, чем возле заглушки. Время воздействия максимального давления у входа действительно будет мизерным, но сам спад максимального давления начинается уже вне трубы — в зоне ускорения жидкости. И неидеальность фронта спада формируется именно там — вне трубы.
Наконец, следует отметить, что разрежение, вплоть до практически полного отсутствия давления при сильном гидроударе, отнюдь не означает, что на этой стадии жидкость покидает всю трубу. Это лишь означает, что жидкость перестаёт давить на её стенки. Реально пустота образуется только в зоне отрыва возле заглушки — там же, где возник гидроудар при внезапном перекрытии потока.
Расчёт ускоряющегося потока
Сила гидравлического удара прямо зависит от скорости, которую успел набрать останавливаемый поток. Достаточно определённо о скорости потока можно сказать только в одном случае — при резком перекрытии установившегося потока. Однако во многих случаях поток под воздействием внешнего давления (или, что то же самое, перепада уровней) периодически набирает некоторую скорость, после чего резко перекрывается, а затем цикл повторяется снова — таков, скажем, принцип работы гидравлических таранов. Этот же процесс имеет место при повторных циклах гидроудара независимо от того, был ли вызван первичный гидроудар перекрытием установившегося или ускорявшегося потока. Поэтому возникает необходимость определить следующие взаимосвязанные величины:
- максимальную скорость, которую изначально покоящаяся жидкость под воздействием внешнего давления может набрать при заполнении трубы;
- время, за которое на этом расстоянии поток наберёт заданную скорость (конечно, не превышающую максимально возможной);
- скорость, которую поток может достичь, имея заданное расстояние для разгона.
При рассмотрении будем предполагать, что поток начинает заполнять горизонтальную пустую трубу, среда внутри которой не оказывает ему сколько-нибудь заметного сопротивления. Кроме того, давление в резервуаре на уровне входа в трубу также будем считать постоянным (это соответствует ситуации, когда объём резервуара намного больше заполняемого объёма трубы, либо такая неизменность давления обеспечивается специальными техническими средствами).
Расчёт сначала проведём без учёта потерь на гидравлическое трение (для сверхтекучей жидкости), а затем попробуем учесть потери.
Где ускоряется жидкость?
Прежде всего следует выяснить, где происходит ускорение жидкости — в трубе или вне её? Уравнение непрерывности даёт однозначный ответ: внутри трубы неизменного сечения скорость потока также неизменна, а следовательно, всё ускорение происходит в резервуаре перед трубой! В этом легко убедиться, наблюдая за сливом воды из ванны — «воронка» над сливным отверстием обусловлена именно зоной ускорения воды, находящейся в объёме самой ванны, а в сливной трубе скорость воды уже не меняется. Поэтому и энергия гидравлического удара обусловлена всем объёмом воды, двигающейся в трубе с одной и той же скоростью.
Давайте определим форму границы области, на которой скорость жидкости меньше скорости в трубе на одну и ту же величину (форму эквискоростной поверхности). Поскольку вне трубы жидкость стремится к её входу со всех сторон в равной степени (давление-то везде одинаково), логично предположить, что при отсутствии каких-либо дополнительных направляющих граница этой области ускорения вокруг входа в трубу имеет сферическую форму. Впрочем, вблизи от входа трубы она будет несколько отличаться от сферической из-за того, что жидкость «сзади» от входа испытывает гидравлическое трение о стенки трубы и, к тому же, прежде чем попасть внутрь, ей необходимо поменять направление, то есть ей труднее попасть в трубу, чем той, что находится напротив входа и практически не меняет направление движения вплоть до попадания внутрь трубы. Однако по мере удаления от входа влияние этих факторов ослабевает и форма эквискоростной поверхности будет всё более приближаться к сферической.
Следует отметить ещё один фактор, влияющий на форму эквискоростной поверхности — это градиент давления. Если он значителен (это имеет место возле поверхности, когда при относительно небольшом увеличении глубины давление может изменяться в разы), то такая поверхность приобретает яйцеобразную форму острым концом вверх, а уровню входа трубы соответствует самая широкая часть этого «яйца». На большой глубине, где при той же разности уровней давление меняется лишь на малые доли процента, форма эквискоростной поверхности будет практически неотличима от идеальной сферы.
Остаётся определить закон, по которому меняется скорость жидкости во внешней среде по мере удаления от входа в трубу. Ответ определяется всё тем же уравнением непрерывности: скорость обратно пропорциональна площади сечения потока, а стало быть, квадрату расстояния от входа в трубу (при строгом расчёте из площади сферы необходимо вычесть площадь сегмента, соответствующего внешнему диаметру трубы, однако уже на расстоянии полутора радиусов от центра входа в трубу его доля составляет лишь немногим более 10%, в двух радиусах — около 7%, а в пяти радиусах — всего 1%).
Гашение ударной волны
Поскольку жидкость разгоняется перед входом в трубу, то, когда в результате гидроудара жидкость в трубе остановилась, вынуждена остановиться и уже набравшая некоторую скорость жидкость возле входа в трубу. Эта остановка вызывает повышение давления вокруг входа, что часто интерпретируется как «выход ударной волны из трубы». Однако повышение давления прямо пропорционально скорости останавливаемой жидкости, а вне трубы эта скорость падает обратно пропорционально квадрату расстояния до входа. Поэтому уже в 10 радиусах трубы от её входа скачок давления при гидроударе составит лишь 1% от его силы в самой трубе — это выглядит как «затухание» ударной волны при выходе её из трубы.
Жидкость в трубе начинает двигаться наружу сразу, как только ударная волна вышла из трубы, поскольку давление сразу становится меньше давления в трубе, хотя и превышает давление невозмущённой внешней жидкости. Однако перепад давлений пока не так велик, и поэтому жидкость движется ещё не так быстро. Затем давление вне трубы быстро падает, и скорость движения жидкости наружу также быстро нарастает. Тем не менее, этот процесс обуславливает принципиальную неидеальность фронта падения давления, начинающего движение от входа к заглушке — он не может быть идеально скачкообразным даже теоретически! На рисунке в фазе (5) это показано как размытость границы падения давления.
Наконец, следует напомнить, что все описанные здесь процессы присходят очень быстро. Если гидроудар был достаточно слабый и отрыва жидкости от заглушки не произошло, то для трубы диаметром в несколько сантиметров время гашения ударной волны и формирование обратного фронта измеряется не милли-, а микросекундами!
Кстати, при обратном движении на стадии отбоя торможение выбрасываемой из трубы жидкости также происходит вне её пределов — в объёме резервуара возле входа. В случае сильного обратного движения со значительным отрывом жидкости от заглушки несферичность зоны торможения более выражена за счёт изначального присутствия направленного скоростного напора, и вблизи от входа трубы она, скорее, напоминает «факел», чем сферу. При этом непосредственно у стенок трубы возле входа возможна эжекция (подсос) жидкости в направлении выброса, то есть к срезу трубы, а не от него. Однако по мере торможения и удаления от входа форма эквискоростной поверхности при торможении выброса во внешней среде опять-таки приближается к сферической.
Расчёт скорости заполняющего трубу потока для сверхтекучей жидкости
Выяснив, что жидкость ускоряется вне трубы, а внутри неё скорость потока одинакова, можно переходить к расчётам скорости.
Сначала рассмотрим внезапное заполнение абсолютно пустой трубы. Условно разобьём непрерывный поток на маленькие порции, мысленно нарезав его поперёк движения на тоненькие «ломтики».
В соответствии с уравнением Бернулли, когда первая порция жидкости ринется в трубу, при разгоне жидкости с неизменным гравитационным потенциалом (в горизонтальной трубе) всё давление должно будет перейти в скоростной напор:
При этом со стороны трубы жидкости ничего не препятствует — труба пуста, поэтому первая порция набирает максимальную скорость практически мгновенно. За ней устремляется следующая порция, на которую сзади действует такое же давление, и спереди её также ничто не сдерживает — ведь первая порция уже унеслась вперёд с максимально возможной скоростью! Поэтому и вторая порция на входе в трубу набирает максимально возможную скорость. То же самое происходит и с третьей, и с последующими порциями. Конечно, в реальности они ускоряются более плавно, чем самое начало потока, но всё это ускорение, как мы выяснили чуть выше, происходит перед входом в трубу, внутри же трубы, начиная от самого её входа, заполняющий поток движется с максимально возможной скоростью, определяемой давлением на входе в трубу:
Теперь предположим, что в трубе возле входа уже было некоторое количество жидкости, которая, к тому же, уже двигалась с некоторой скоростью. Тогда по закону Бернулли со стороны жидкости вне трубы на неё будет действовать сила
Соответственно, ускорение жидкости будет определяться этой силой и массой жидкости в трубе:
Проанализируем только что полученную формулу для ускорения.
- Если жидкость движется навстречу внешнему давлению, внешнее давление тормозит её, суммируя своё воздействие со скоростным напором жидкости. Эта ситуация имеет место во время обратного хода жидкости при отбое гидроудара в фазах 5 — 7 (пока обратное движение не остановится).
- Если жидкость в трубе покоится или движется в ту же сторону, куда действует внешнее давление, но скорость её меньше максимальной vM(12), внешнее давление ускоряет её движение внутрь трубы и тем сильнее, чем медленнее движется жидкость. Эта ситуация соответствует фазе 1 при повторных циклах сильного гидроудара (с отрывом).
- Если жидкость в трубе движется в ту же сторону, куда действует внешнее давление, со скоростью, равной максимальной vM(12), ускорение отсутствует. Эта ситуация соответствует рассмотренному чуть выше заполнению пустой трубы, когда скорость заполнения неизменна и максимальна.
- Наконец, если жидкость в трубе движется в ту же сторону, куда действует внешнее давление, но её скорость превышает vM(12), внешнее давление не может ускорить жидкость в трубе, а новая жидкость заполняет трубу как пустую со скоростью vM. Впрочем, для создания такой ситуации надо приложить особые усилия и проявить немало изобретательности.
В соответствии с формулой (14) скорость потока при заполнении трубы на расстояние x от входа в трубу будет равна
Итак, при попытке рассчитать скорость аналитическими методами мы сталкиваемся с необходимостью брать интеграл функции от самой себя. Это обусловлено тем, что разгон жидкости в трубе относится к неустановившимся («нестационарным») процессам, развитие которых прямо определяется состоянием их важнейших параметров на предыдущем этапе. Теперь понятно, почему теория гидравлического удара так долго находилась лишь на уровне качественного описания явления, а практические расчёты выполнялись на основании опытных данных и эмпирических формул, подходящих только для узкого диапазона условий. Однако получившаяся ситуация не является препятствием для численных методов решения задач, а с учётом возможностей современных компьютеров использование численных методов не представляет проблемы. К тому же для приближения к реальности необходимо учесть и гидравлическое трение, расчёт которого в аналитической форме, мягко говоря, весьма затруднителен.
Расчёт скорости заполняющего трубу потока с учётом гидравлического трения
В реальности для получения заметного гидроудара скорость потока перед его остановкой должна быть достаточно большой, так что при расчёте скорости нельзя не учитывать потери от гидравлического трения. К сожалению, расчёты гидравлического трения основаны на эмпирических закономерностях, каждая из которых действует в своём диапазоне скоростей. Поэтому решать такую задачу с учётом всех нюансов наиболее удобно с помощью численных методов. В общем виде её решение заключается в учёте в формуле (14) потерь на гидравлическое трение PT:
Как и прежде, знак «±» указывает на векторное сложение внешнего давления, скоростного напора и гидравлического трения. Если движение жидкости направлено от входа трубы — по действию внешнего давления, — то внешнее давление стремится ускорить поток, но скоростной напор нейтрализует часть этого давления, а гидравлическое трение тормозит поток. Поэтому трение и скоростной напор следует вычитать. Если же движение жидкости направлено ко входу трубы (стадия отбоя — отрицательная скорость), остановить её совместно стремятся все три фактора. Поэтому пока жидкость движется вспять, нужно всё суммировать.
Поскольку расчёты гидравлического трения обычно выполняются как расчёт потерь напора HT, они переводятся в потери давления через плотность ρ и ускорение свободного падения g как PT = HT · g · ρ. Поэтому текущее ускорение с учётом потерь на трение следует рассчитывать по формуле
Используя для расчёта потерь в круглой трубе универсальную формулу Вейсбаха-Дарси, получаем
Тем не менее, даже рассматривая влияние гидравлического трения лишь с точки зрения качественной оценки, можно сделать важный вывод. Если в начале разгона потока труба частично заполнена жидкостью, после достижения определённой длины заполненного участка, зависящей от внешнего давления и параметров трубы и жидкости, скорость потока перестанет повышаться и начнёт снижаться из-за того, что потери напора на трение превысят напор от внешнего давления. Поэтому слишком длинный пробег снизит силу гидроудара.
При заполнении пустой трубы скорость потока из-за трения начнёт снижаться сразу с начала заполнения. Однако это не значит, что для получения максимального гидроудара оптимальная длина пустой трубы должна быть как можно меньше: ведь чем меньше длина трубы, тем меньше длительность гидроудара, а следовательно, и его энергия, и его воздействие на стенки этой трубы. В предельном случае при нулевой длине трубы длительность гидроудара также нулевая, поэтому каким бы теоретически мощным он бы ни был, на практике вообще ничего произойти не может — ведь его энергия будет равна нулю!
К сожалению, даже приблизительные количественные оценки возможны только после выполнения необходимых расчётов с помощью специальной программы. В принципе, для написания такой программы можно использовать и Visual Basic из Excel, но он не очень удобен для решения подобных задач, хотя вся математика сводится к формуле (18) и расчёту коэффициента гидравлического трения. Поэтому была написана специальная программа . Результаты расчёта для заполнения пустых труб разного диаметра водой с различным напором приведены на отдельной странице .
Особые случаи
Теперь рассмотрим особые случаи гидроудара, когда условия существенно отличаются от рассматриваемых до сих пор «идеально-лабораторных». Наиболее часто встречающиеся отличия можно свести к следующим случаям.
- Поток заполняет трубу, которая предварительно уже была частично заполнена жидкостью.
- Поток сталкивается не с твёрдой неподвижной заглушкой, а с другим потоком жидкости, который может двигаться ей навстречу («лобовое столкновение») или в ту же сторону (новый поток догоняет и «подталкивает» предыдущий).
- Гидроудар происходит с утечками жидкости из трубы, например, при неполном перекрытии трубы заслонкой или заглушкой, либо в трубе, где имеются дополнительные отверстия помимо входа, через который вливается поток.
Гидроудар в частично заполненной трубе
Нередко труба, в которую устремился поток, вызвавший гидроудар, бывает уже частично заполнена жидкостью — неподвижной или движущейся в ту или другую сторону. Рассмотрим два крайних случая — гидроудар в частично заполненной горизонтальной трубе, где жидкость равномерно распределена по её длине, и гидроудар в вертикальной трубе, где жидкостью уже заполнена часть трубы возле заглушки.
Рассматривая эту ситуацию в общем, можно сказать, что энергия гидроудара по сравнению с заполнением пустой трубы уменьшается в число раз k, равное
Соответственно сила гидроудара, определяемая интегральной скоростью всей жидкости в трубе, уменьшится в √ k , то есть пропорционально квадратному корню от отношения незаполненного объёма к общему объёму трубы.
Однако это утверждение полностью применимо лишь к повторным циклам такого гидроудара. Что же касается первого цикла, и прежде всего его стадии сжатия (первичного удара), то хотя за весь период в общем его энергетика будет соответствовать формуле (19), при внимательном рассмотрении возникают существенные нюансы, зависящие, в том числе, и от того, сосредоточена ли уже находящаяся в трубе жидкость в одном её конце (вертикальное положение) или равномерно распределена по всей её длине (горизонтальное положение).
Гидроудар в частично заполненной горизонтальной трубе
Предположим, что горизонтальная труба равномерно по всей длине заполнена на некоторую высоту неподвижной жидкостью. Когда такая труба вдруг начинает заполняться дополнительным потоком жидкости, он «сминает» ту жидкость, что уже была в трубе. Однако, пока в трубе есть свободное место, эта жидкость не оказывает жёсткого сопротивления, а «подчиняется», под действием напора потока повышая свой уровень и набирая скорость в направлении заполняющего потока. И только когда свободного места в трубе не остаётся, сопротивление становится жёстким и происходит гидроудар.
Нарастание скорости неподвижной жидкости происходит плавно. Сначала она преимущественно движется вверх (уровень поднимается), затем начинает увеличиваться горизонтальная составляющая, которая к моменту поднятия уровня до верха трубы становится равной скорости потока у входа в трубу. Поэтому можно сказать, что по мере приближения потока вектор скорости микрообъёма жидкости, находившейся в трубе, меняет своё направление с вертикального на горизонтальное, одновременно возрастая по абсолютной величине от нуля до скорости на входе в трубу.
С энергетической точки зрения, заполняющий поток вынужден терять свою энергию как на подъём уровня, так и на разгон уже имевшейся в трубе жидкости. Кроме того, через вход в трубу попадёт меньшее количество двигающейся жидкости, обладающей кинетической энергией, поскольку часть объёма трубы уже занята изначально покоящейся жидкостью. А энергия гидроудара определяется именно суммарной энергией всей жидкости находящейся в трубе в момент его начала.
Поэтому энергия гидроудара E будет равна
Если жидкость в трубе уже двигалась, при расчёте потерь энергии заполняющим потоком это необходимо учесть. Здесь важно определить, из-за чего возникает основной гидравлический удар — из-за столкновения двух потоков жидкости или из-за столкновения общего потока с жёсткой заглушкой. В первом случае при встречном движении надо прибавлять, а при попутном вычитать скорость уже имеющейся в трубе жидкости из скорости заполняющего потока, во втором случае — наоборот.
Таким образом, гидравлический удар в горизонтальной трубе, которая предварительно уже частично заполнена, будет слабее, чем при заполнении пустой трубы.
Гидроудар в частично заполненной вертикальной трубе
Рассмотрим развитие гидроудара в вертикальной трубе, часть которой возле заглушки уже заполнена неподвижной жидкостью. Случай, когда жидкостью заполнена часть трубы возле входа, рассмотрен выше и описывается формулами (13) (для сверхтекучей жидкости) и (16)–(18) (с учётом гидравлического трения).
Когда поток сталкивается с неподвижной жидкостью возле заглушки, гидроудар возникает немедленно и распространяется в обе стороны — к заглушке и ко входу в трубу. При этом его сила (скачок давления) в соответствии с формулой Жуковского определяется лишь скоростью перед остановкой. Но зато длительность, а, следовательно, и полная энергия, определяется геометрией, то есть расстояниями от места столкновения до заглушки и до входа в трубу.
Разберём этапы развития этого процесса более подробно (в скобках указаны соответствующие цифры на рисунке). Заполняющий трубу поток (этап 1) натыкается на неподвижную жидкость. Поскольку деваться ей некуда, она сразу оказывает жёсткое сопротивление вновь прибывшей жидкости и останавливает её. Поэтому в месте столкновения кинетическая энергия потока сразу начинает переходить в потенциальную энергию упругой деформации, что сопровождается повышением давления — в месте столкновения возникает гидравлический удар (этап 2). Ударная волна от места удара начинает распространяться в обе стороны — как по набегающему потоку, останавливая всё новые его части, так и по неподвижной жидкости, сжимая её (этап 3). Впрочем, благодаря малой сжимаемости жидкостей при таком сжатии вещество почти не перемещается, поэтому неподвижная жидкость фактически остаётся там же, где была до начала гидроудара. Через какое-то время фронты сжатия, движущиеся в разные стороны, достигнут заглушки и выхода из трубы. Когда фронт сжатия достигнет заглушки, не произойдёт ничего, а вот когда фронт сжатия достигнет входа в трубу, ударная волна выйдет в среду и начнёт рассеиваться (этап 4), также как и в фазе (4) «классического» гидроудара.
Затем граница области сжатия начнёт откатываться внутрь трубы (этап 5 здесь и фаза (5) «классического» гидроудара). Однако пока передний фронт зоны сжатия ещё не достиг заглушки, сильного обратного движения жидкости за задним фронтом сжатия нет. Это обусловлено тем, что импульс исходного потока продолжает распространяться к заглушке до тех пор, пока не достигнет её. При этом на переднем фронте зоны сжатия жидкость как бы слегка «проминается», и всё это выглядит как перетекание освобождающейся энергии деформации с заднего фронта зоны сжатия в сжимаемую жидкость на её переднем фронте. Таким образом, картина несколько отличается от «классики» — возле заглушки мы имеем ещё невозмущённую несжатую неподвижную жидкость, к ней стремительно движется фронт сжатия, а от входа трубы с той же скоростью и в том же направлении уже движется фронт спада давления.
Когда передний фронт зоны сжатия достигает заглушки (этап 6), он как бы «упирается» в неё, поскольку впереди больше нет жидкости, которую можно было бы сжать. Теперь «разряжаемая» жидкость на заднем фронте области сжатия действительно начинает двигаться обратно ко входу в трубу, поскольку для освобождаемой энергии деформации остаётся только один вариант — превратиться в кинетическую энергию жидкости. Однако при этом надо разогнать и всю жидкость на участке от заднего фронта зоны сжатия до входа в трубу, что занимает некоторое время. Поэтому задний фронт давления несколько «размывается», как показано на этапе 7. Впрочем, по мере разгона жидкости в обратном направлении эта «размытость» заднего фронта становится всё менее выраженной и, в конце концов, картина приближается к «классической» фазе (6). Этот механизм преобразует относительно мощный, но короткий импульс первичного удара в более слабый, но имеющий «стандартную» (т.е. ту же, что при заполнении пустой трубы) длительность — такую же, как и во всех последующих циклах.
Наконец, развитие процесса полностью переходит в «классические» рамки: зона сжатия сокращается (этап 7) и в последнюю очередь исчезает возле заглушки — этап 8, «классическая» фаза (6). Затем наступает фаза разрежения, которая при достаточной силе гидроудара сопровождается отрывом жидкости от заглушки — этап 9, «классическая» фаза (7). Однако за счёт «размывания» заднего фронта и необходимости разгона при обратном ходе всей жидкости в трубе скорость при этом будет меньше исходной скорости потока, даже в идеальном случае — когда нет необратимых потерь.
Остаётся выяснить вопрос, насколько изменится сила гидроудара по сравнению с пустой трубой? Здесь картина более сложная, чем в рассмотренной чуть выше горизонтальной трубе. Пока зона сжатия расширяется и её передний фронт не достиг заглушки, за счёт «проминания» невозмущённой жидкости, сжимаемость которой равна сжимаемости останавливаемой жидкости, скачок давления будет в корень из двух раз меньше, чем при гидроударе непосредственно в заглушку (кинетическая энергия преобразуется в деформацию, распространяющуюся в обе стороны от места начального столкновения). Однако если изначально неподвижной жидкости в трубе меньше, чем вновь прибывшей, то, когда передний фронт зоны сжатия достигает заглушки, сила гидроудара (скачок давления) там достигает тех же значений, что и в случае пустой трубы.
А вот длительность первого сжатия в любом случае будет меньше и на участке от места возникновения гидроудара до заглушки равна
Длительность первого сжатия на участке от входа в трубу до места возникновения гидроудара будет такой же, как и при заполнении пустой трубы и должна рассчитываться по формуле (9).
Для всех последующих циклов гидроудара длительности стадий сжатия и расширения определяются уже полной длиной трубы от входа до заглушки и не отличаются от заполнения пустой трубы. Поэтому они должны рассчитываться по тем же формулам (6)—(10). Однако энергия гидроудара по сравнению с пустой трубой уменьшается в число раз, равное соотношению длительностей первой стадии сжатия
Соответственно, скорости жидкости и скачок давления при всех последующих стадиях гидроудара в частично заполненной трубе будут отличаться от случая пустой трубы в √ k E раз (квадратный корень из соотношения энергий). С учётом того, что кинетическая энергия здесь прямо пропорциональна массе жидкости, а в масса жидкости в трубе с неизменным сечением — её длине, это соотношение определяется квадратным корнем из отношения длины незаполненной части трубы к полной её длине √ (l / L) .
Мы рассмотрели столкновение потока с неподвижной жидкостью. Однако жидкость, в которую ударяет поток, может и сама двигаться в ту или иную сторону. Но здесь мы уже имеем дело со столкновением потоков.
Гидроудар в результате столкновения потоков
Гидроудар может возникнуть не только при столкновении потока c неподвижной жёсткой заглушкой или задвижкой, но и в случае его столкновения с другим потоком, движущимся по той же трубе. При этом один поток может «догнать» другой, движущийся в том же направлении, либо испытать «лобовое столкновение» с потоком, движущимся навстречу.
Эта ситуация отнюдь не редкая. Она может возникнуть практически в любом закольцованном трубопроводе, например, в домовой жидкостной отопительной системе в момент её заполнения теплоносителем, если слесари неправильно откроют вентили.
Тем не менее, расчёт здесь очень прост — в случае встречного столкновения повышение давления (т.е. сила гидроудара) равно сумме повышений давлений для каждого из потоков, если бы он столкнулся с неподвижной преградой. В случае же попутного удара более быстрого потока в «хвост» более медленного повышение давления будет равно разности скачков давлений гидроударов каждого из потоков о неподвижную преграду. Это следует из формулы Жуковского, где повышение давления прямо пропорционально изменению скорости двигавшегося потока.
Дальнейшее развитие событий протекает аналогично гидроудару в частично заполненной вертикальной трубе за одним исключением — поскольку в этой трубе нет жёстких заглушек, жидкость может не остановиться, а продолжить движение в том направлении, в котором двигался более «сильный» поток, т.е. поток с большей энергией или подпитываемый внешним источником (конечно, скорость потока при этом изменится).
Гидроудар с утечками (неполный гидроудар)
Ещё один вариант «из жизни» — это наличие утечек из трубы во время гидроудара. Причиной таких утечек может быть неполное перекрытие трубы заслонкой или заглушкой. Другая распространённая причина — наличие в трубе помимо входа, через который вливается поток, дополнительных отверстий (созданных специально или аварийных — в данном случае не так важно). Суммарная площадь таких отверстий или незакрытого просвета, естественно, должна быть меньше внутреннего сечения трубы, иначе гидроудара не будет в принципе, потому что не получится необходимого ограничения вытекающего из трубы потока.
Поскольку из-за наличия утечек жидкость не остановится полностью, то скачок давления будет меньше, чем при их отсутствии. Поэтому такой гидроудар иногда называют «неполным» в отличии от гидравлического удара с полной остановкой потока.
Гидроудар с боковой утечкой
Рассмотрим погружённую на некоторую глубину в стоячий водоём горизонтальную трубу неизменного сечения с заглушкой на одном конце, изначально пустую, в которой внезапно открывается вход и относительно небольшое отверстие сбоку недалеко от заглушки, причём сечение бокового отверстия существенно меньше внутреннего сечения трубы.
Сначала всё идёт, как и в фазе (1) «классического» гидроудара. Правда, если боковое отверстие уже открыто, через него также вливается дополнительный поток в пустую часть трубы, поэтому повышающийся уровень несколько тормозит основной поток, как и в случае горизонтальной трубы, предварительно частично заполненной жидкостью. Однако если боковое отверстие невелико, а основная труба не очень длинная, то такой жидкости поступит мало, и её влиянием можно пренебречь. Когда фронт основного потока пройдёт мимо отверстия, поступление жидкости сбоку сократится, но не прекратится (стадия 1). Это связано с тем, что давление движущегося потока меньше, чем давление неподвижной жидкости снаружи, поэтому через боковое отверстие будет продолжаться эжекционный подсос. Однако интенсивность его из-за меньшей разности давлений обычно существенно меньше, чем при заполнении пустой трубы, поэтому его влиянием на заполнение остатка трубы основным потоком в подавляющем большинстве случаев также можно смело пренебречь.
Затем поток достигает заглушки (стадия 2), останавливается, начинается его сжатие и формируется ударная волна, движущаяся ко входу в трубу (стадия 3). При этом давление возле заглушки в соответствии с формулой Жуковского достигает максимального давления P1. Если на стадиях 1–3 боковое отверстие закрыто клапаном и внутрь трубы через него ничего не поступает, процесс вообще ничем не будет отличаться от фаз (1)–(3) «классического» гидроудара.
Отличия начинаются, как только ударная волна и зона резко возросшего давления достигают бокового отверстия (стадии 3 и 4). Тут же часть жидкости под воздействием этого давления начинает выбрасываться наружу со скоростью v1. При этом возле отверстия возникает зона быстрого движения жидкости и вызванное этим пониженное (относительно гидроудара) давление. Граница такой зоны начинает распространяться в стороны от отверстия. Однако, по мере удаления от отверстия скорость устремляюшегося туда потока резко убывает (вблизи — обратно пропорционально квадрату расстояния, подальше из-за ограничений внутреннего пространства трубы — менее резко). Поэтому вокруг отверстия до фронта падения давления создаётся градиент давления — чем дальше от отверстия, тем выше давление. Наряду с распространением от отверстия зоны понижающегося давления, основная ударная волна продолжает движение в сторону входа в трубу, расширяя зону сжатой жидкости. Оба эти процесса происходят со скоростью распространения упругих деформаций, близкой к скорости звука (ещё раз подчеркну, что не следует путать высокие скорости фронтов давления с относительно низкими скоростями перемещения самой жидкости — в силу низкой сжимаемости жидкостей в заполненном сосуде её малейшие перемещения способны вызвать огромные перепады давления).
Но жидкость на участке от входа в трубу до бокового отверстия не остановилась полностью — она продолжает двигаться, вытекая в боковое отверстие. И хотя эта остаточная скорость движения v2 теперь значительно уменьшилась по сравнению с скоростью заполнения пустой трубы v, она есть. Поэтому между входом и отверстием жидкость не останавливается полностью, а лишь тормозится. Впрочем, и этой разности скоростей при малом сечении бокового отверстия вполне достаточно для повышения давления до величины P2, весьма немалой, но, конечно, меньше силы гидроудара полностью остановленной жидкости P1. Это имеет место на стадиях 5 и 6.
Однако если со стороны входа жидкость, выходящая в отверстие, компенсируется вновь прибывающими порциями, то у заглушки дела обстоят иначе, — ведь жидкость уходит в отверстие со всех сторон, а новой возле заглушки взяться неоткуда. Не образуется ли там разрежение? Нет, не образуется! Конечно, по мере распространения фронта падения давления от отверстия давление там снизится с уровня P1, и, как только оно станет ниже уровня P2, жидкость со стороны входа начнёт перетекать к заглушке, поддерживая там давление, близкое к P2. Это обусловлено тем, что у стенки трубы, противоположной боковому отверстию, скорость движения жидкости в отверстие весьма мала, и падение давления по сравнению с P2 там незначительно. Поэтому, как только за счёт утекающей наружу жидкости давление у заглушки станет меньше его величины, под действием разности давлений возникнет компенсирующее течение, показанное на рисунке горизонтальной тёмно-синей стрелкой под отверстием. Конечно, по закону Бернулли это движение также несколько уменьшит давление, поэтому, строго говоря, давление у заглушки будет меньше P2. Но если утечка достаточно мала, скорость компенсирующего течения будет невысокой, и тогда можно считать, что давление у заглушки практически равно P2.
Кроме того, пока возле заглушки сохраняется область исходного максимального давления P1, жидкость в отверстие со стороны заглушки устремляется за счёт этого давления, а не за счёт её перетекания от входа по противоположной от отверстия стенке трубы. Поэтому в это время остаточный поток со стороны входа равен половине утечки через отверстие (стадия 5). И лишь после того, как область начального — самого высокого — давления P1 у заглушки исчезнет, вся утечка будет происходить за счёт остаточного потока от входа в трубу (стадия 6), при этом его скорость возрастёт вдвое по сравнению с предыдущей стадией, а давление P2 соответственно понизится.
Особо подчеркну, что область снижения давления у отверстия утечки не распространяется на всю трубу — ни ко входу, ни к заглушке! Давление относительно P2 начинает снижаться лишь непосредственно возле этого отверстия на расстояниях, меньших внутреннего диаметра трубы.
Наконец, ударная волна достигает входа в трубу и начинается обратное движение (стадия 7). В этот момент давление во всей трубе за исключением блиайших окрестностей отверстия равно P2 (на участке между отверстием и заглушкой — чуть меньше).
Теперь от входа начинает увеличиваться область давления, близкого к давлению вне трубы. В ней жидкость движется ко входу со скоростью, обусловленной давлением P2 и по величине равной v – 2 · v2 (если не учитывать необратимые потери). Это стадия 8. В оставшейся области высокого давления жидкость по-прежнему продолжает двигаться к отверстию с остаточной скоростью v2.
Когда волна спада давления доходит до области пониженного давления возле отверстия (стадия 9), она как бы «срезает» её, практически не влияя на истечение жидкости из отверстия до тех пор, пока не пройдёт через отверстие. Как только это произойдёт, истечение жидкости прекращается (быстро, но не мгновенно, поскольку жидкость вытекала со значительной скоростью и имеет заметную инерцию). При большой скорости истечения через отверстие в силу инерции потока, возможен даже его отрыв от основной массы жидкости в трубе и образование небольшой области пустоты (стадия 10). Если же отрыва не произошло, то после остановки потока через отверстие начинается эжекционный подсос, как и на стадии 2.
Когда высокого давления в трубе не останется, вся жидкость в трубе будет двигаться в направлении от заглушки обратно ко входу в трубу (стадия 11). К этому времени пустота, образовавшаяся в месте отрыва потока утечки, скорее всего, уже «схлопнется», породив небольшой гидроудар. Однако в силу своей относительно малой энергии он не оказывает заметного влияния на жидкость в трубе и быстро затухает. По окончании процессов этого «дочернего» гидроудара через отверстие утечки опять-таки начинается эжекционный подсос.
Если гидроудар был сильным, то жидкость отрывается от заглушки и в этой области образуется пустота (стадия 12). Однако критерием отрыва в данном случае является не давление полной остановки потока P1, а давление возле заглушки в конце этапа сжатия, несколько меньшее, чем P2. Оторвавшаяся жидкость под действием внешнего давления у входа в трубу постепенно останавливается, а затем вновь устремляется в трубу, повторяя стадию 1. Если пустая область распространилась до отверстия утечки, относительно небольшой эжекционный подсос через него сменяется прямым заполнением трубы, ослабляющим силу последующих циклов гидроудара и способствующим их быстрейшему затуханию.
Мы рассмотрели лишь наиболее существенные моменты, однако уже понятно, что гидроудар с утечками — процесс гораздо более сложный, чем «классический» гидроудар без утечек. При более внимательном анализе выявляется ещё множество нюансов, дополнительно усложняющих картину. Но их влияние обычно весьма незначительно и потому они заслуживают внимания лишь в отдельных, особо экзотических случаях.
Гидроудар с торцевой утечкой
Если отверстие утечки находится в торце трубы, то и сам процесс, и его расчёт существенно упрощаются.
На стадии 1 первичное заполнение трубы происходит с двух сторон — основным потоком через вход трубы и небольшим (в силу меньшего сечения) потоком через отверстие в торце-заглушке. Как и в случае боковой утечки, уровень жидкости, повышающийся возле заглушки за счёт дополнительного потока, несколько затормозит основной поток, — ведь основной поток будет заполнять горизонтальную трубу, уже частично заполненную жидкостью. Однако если это отверстие невелико, а сама труба не очень длинная, то такой жидкости поступит мало, и её влиянием можно пренебречь. Если же за заглушкой жидкости нет либо отверстие закрыто клапаном, эта стадия вообще ничем не отличается от фазы (1) «классического» гидроудара.
Но как только поток достигает заглушки, сразу же начинаются отличия. Часть потока, оказавшаяся напротив отверстия, сразу «влетает» туда, мгновенно останавливая втекавшую жидкость (если таковая была) — тут происходит встречный гидроудар. Остальная часть потока резко тормозится об заглушку и давление в соответствии с формулой Жуковского тут же достигает максимального давления P1, обусловленного полной скоростью потока перед остановкой v (стадия 2). Под действием этого давления жидкость вокруг отверстия утечки устремляется туда со всех сторон, создавая разрастающуюся область быстрого движения с пониженным относительно P1 давлением. В то же время основная ударная волна начинает своё движение ко входу в трубу. Это соответствует стадии 3.
Как и в случае боковой утечки, по мере удаления от отверстия скорость устремляюшегося туда потока убывает обратно пропорционально квадрату расстояния. Поэтому от отверстия и до фронта падения давления создаётся градиент давления — чем дальше от отверстия, тем выше давление. Однако, когда диаметр этой области становится равным внутреннему диаметру трубы, стенки трубы ограничивают её, и при дальнейшем распространении ударной волны по трубе в остальной части трубы давление уже одинаково. И, конечно, жидкость в трубе не останавливается полностью, а продолжает двигаться с небольшой скоростью v2, компенсирующей поток, уходящий наружу через отверстие утечки со скоростью v1. Поэтому на стадии 4 давление будет равно величине P2, которая меньше максимального давления при полной остановке P1.
Затем ударная волна достигает входа трубы и начинает обратное движение (стадия 5). В отличии от боковой утечки, зон, где жидкость неподвижна или движется в обратную сторону, в этот момент нет. Во всей трубе жидкость движется к заглушке (точнее, к отверстию в ней) со скоростью v2 и давление равно величине P2. Единственное исключение составляет область в непосредственной близости от отверстия утечки, где давление снижается из-за ускорения жидкости, направляющейся наружу.
По мере обратного движения ударной волны и сокращения области высокого давления, жидкость в области высокого давления продолжает двигаться к отверстию в заглушке, а жидкость в части трубы, где давление уже упало, начинает двигаться ко входу в трубу со скоростью, обусловленной давлением P2 и по величине равной v – 2 · v2 (если не учитывать необратимые потери). Когда волна спада давления доходит до области пониженного давления возле отверстия (стадия 6), она как бы «срезает» её, практически не влияя на истечение жидкости из отверстия до тех пор, пока не дойдёт до торцевой заглушки.
В момент, когда давление во всей трубе упало, вся жидкость в ней движется обратно ко входу, а то, что успело «выскочить» в отверстие утечки — в противоположную сторону. Поэтому при достаточной силе гидроудара оба потока отрываются от стенок трубы и друг от друга, и возникает пустота. Следует особо подчеркнуть, что, в отличие от боковой утечки, когда отрывы потока утечки от отверстия и основного объёма жидкости от торца заглушки происходят в разных местах и в разное время, из-за чего могут образоваться две области пустоты с различным временем жизни, в случае торцевой утечки всегда образуется единая область пустоты в одном месте и в одно время (стадия 7).
Но поток утечки слабее основного потока в трубе, и потому (если не предприняты специальные меры) его область отрыва быстро заполняется жидкостью снаружи, которая затем начинает поступать внутрь трубы (стадия 8). Это может произойти задолго до того, как основная масса жидкости в трубе после постепенного торможения снова начнёт движение к заглушке, повторяя стадию 1. Впрочем, не следует забывать, что «долго» в данном случае обычно измеряется милли-, а то и микросекундами!
Таким образом, в отличие от боковой утечки, при гидроударе с торцевой утечкой не происходит перетекания жидкости мимо отверстия утечки, и давление во всей трубе на протяжении всего этапа сжатия одинаково и равно P2. Остаточная скорость жидкости также одинакова по направлению и величине (кроме небольшой области возле самой заглушки). Пустота тоже возникает только один раз и в одном месте. Это существенно упрощает расчёты, особенно в том случае, когда отверстие утечки достаточно велико и остаточная скорость v2 относительно высока.
Расчёт гидроудара с утечкой
Важнейшим параметром для расчёта является остаточная скорость v2. В силу уравнения непрерывности она соотносится со скоростью истечения жидкости из дополнительного отверстия v1 как
В то время, когда давление у заглушки ещё остаётся первоначально высоким (стадия 5 при боковой утечке), скорость остаточного потока следует считать вдвое меньшей, поскольку со стороны заглушки жидкость к отверстию поступает самостоятельно, а остаточный поток от входа обеспечивает лишь «свою» половину утечки:
Но если утечка происходит через торцевую заглушку или в непосредственной близости от неё, время действия этой формулы весьма мало, и тогда при расчётах вполне достаточно формулы (23).
Таким образом, всё сводится к определению скорости утечки жидкости через отверстие v1. Если считать, что среда вне трубы не оказывает существенного сопротивления истечению жидкости, то скорость рассчитывается аналогично формуле (12):
Это наибольшая возможная скорость утечки, когда за отверстием находится не жидкость, а воздух или вакуум. При этом в начальный момент ΔP не может превышать P1. По мере того, как давление возле отверстия падает, уменьшается и скорость. В свою очередь, падение скорости приводит к некоторому повышению давления. Это выглядит как затухающий колебательный процесс и при расчёте численными методами также проявится и на бумаге. На самом деле подробности этого процесса малоинтересны — в любом случае весь он не превышает времени, необходимого ударной волне для того, чтобы пересечь внутренний диаметр трубы, — т.е. считанные микросекунды. Гораздо важнее установившееся значение скорости утечки во время всей оставшейся длительности этапа сжатия. Но эта скорость зависит от давления P2, а давление, наоборот, от неё. Получается замкнутый круг, однако численными методами с помощью последовательного приближения решение найти достаточно легко — как уже говорилось, данные расчёта образуют сходящийся ряд значений. Для грубой оценки или при существенной разности сечений трубы и бокового отверстия будет достаточно формулы (25). Для точного расчёта необходимо учесть все условия утечки, в том числе длину и другие параметры канала, по которому утекает жидкость. Кроме того, надо учесть и потери давления, возникающие при сужении канала протекания жидкости — переход от большого внутреннего сечения основной трубы, где возникает гидроудар, к малому проходному сечению отверстия утечки. Такой режим расчёта поддерживает программа SiP.
Гидроудар с большими утечками
Если утечка достаточно велика, то характер гидроудара меняется кардинальным образом. По мере увеличения отверстия утечки при прочих равных условиях остаточная скорость v2увеличивается, поэтому если сначала энергии, запасённой в упругой деформации, хватало на отрыв жидкости от заглушки, то затем её для этого уже недостаточно, а при дальнейшем увеличении отверстия этой энергии уже может не хватить даже для снижения давления возле заглушки ниже давления у входа в трубу. В результате при гидроударе с большой утечкой отсутствует этап разрежения, как он понимается в «классическом» гидроударе (давление не падает ниже внешнего давления у входа в трубу, не говоря уже об отбое с отрывом жидкости от заглушки), а значит, в принципе не возможны повторные циклы, связанные с обратным движением жидкости. Точнее, затухающие колебания давления по-прежнему имеют место, однако давление всё время остаётся достаточно высоким, а жидкость уже не меняет направления своего движения, лишь несколько меняя скорость, которая в конце концов стремится к скорости стационарного потока в канале переменного сечения, определяемой давлениями снаружи трубы — у её входа и у отверстия утечки.
Что можно выбрать критерием большой утечки при гидроударе? Представляется логичным считать утечку большой, когда остаточная скорость v2 достигает половины от исходной скорости потока v или превышает её:
Тогда в момент окончания этапа сжатия и падения давления накопленной энергии деформации уже недостаточно для создания обратного движения жидкости — она лишь замедляет своё движение в прежнем направлении, но никогда не движется вспять!
При этом без расчёта нельзя сказать, будет ли выполняться этот критерий при данном соотношении внутреннего сечения трубы и отверстия утечки — это зависит не только от соотношения сечений, но и от других факторов, прежде всего от скорости потока (чем меньше разность сечений и чем меньше скорость, тем больше вероятность признания утечки «большой»), а также от того, что находится за отверстием утечки: пространство, заполненное атмосферным воздухом или вакуум, либо не ограниченная стенками жидкость при том или ином давлении, либо узкая труба — пустая или чем-то заполненная. Впрочем, соотношение сечений основной трубы и отверстия утечки 400:1 и более (т.е. не менее двадцатикратной разности диаметров) обычно даёт «большую» утечку лишь при столь малых скоростях исходного потока, что говорить о гидроударе в этих случаях можно только теоретически — он слишком слаб. На практике и десятикратной разности диаметров (соотношение сечений 100:1) очень часто вполне хватает для того, чтобы считать утечку достаточно малой.
О сверхъединичности гидроударов
Выше мы рассматривали гидроудар с «традиционных» механистических позиций. В то же время есть довольно много сведений, что при сильных одиночных гидравлических ударах или при множественных относительных слабых (в том числе при кавитации) имеют место необычные явления, не сводимые к механике и, возможно, приводящие к появлению некоей дополнительной энергии. Особенно часто отмечают видимое глазом свечение и аномальный нагрев микрообъёмов жидкости в зоне кавитации. Реже обращают внимание на весьма необычные с «механической» точки зрения результаты кавитационной коррозии, заключающиеся не только в традиционном разрушении и изъязвлении материалов, но и образовании различных «наплывов» и выступов (часто это объясняют «эффектом ковки», который оказывают кавитационные пузырьки на металл деталей, однако здесь имеет место явный перенос потоком жидкости материала корродировавшей детали, поскольку расстояние между зонами разрушения и осаждения материала в таких случаях часто на порядки превышает размеры «молотов»-пузырьков).
Следует отметить, что на короткое время гидроудар ставит вещество в крайне экстремальные условия — давление может возрастать на сотни и даже тысячи атмосфер, что соответствует условиям на глубине в десятки километров, где вещества приобретают экзотические свойства и претерпевают необычные трансформации (например, твёрдые вещества проявляют текучесть, а графит может превратиться в алмаз). Но даже если давление вырастает не очень сильно (на десятки атмосфер, а то и просто на несколько атмосфер), скорость изменения давления для каждой попавшей под удар частички вещества очень высока — 10 12 Па/с и более (не путать со скоростью распространения ударной волны!). Она вполне сравнима, а то и превосходит скорости изменения давления при взрывах. При этом образующаяся во время взрывов газовая или плазменная среда является весьма сжимаемой, — она «амортизирует» удар, и чуть дальше от эпицентра давление нарастает гораздо более плавно. Но во время гидроудара из-за малой сжимаемости жидкостей и высокой жёсткости материала стенок этот сверхрезкий скачок давления воздействует практически на весь объём, участвующий в гидроударе. Столь резким скачкам давления соответствуют и гигантские ускорения и торможения частичек вещества при прохождении через них фронта ударной волны. Правда, длятся они нано- и пикосекунды, поэтому общее смещение частиц жидкости мало и обычно составляет, в соответствии с её малой сжимаемостью, микрометры или нанометры. Тем не менее, по меркам атомов и молекул, эти сдвиги весьма велики, и возникающие при этом силы тоже немаленькие. Так что нельзя исключить, что такие «наносдвиги» могут стать причиной каких-то необычных явлений.
Тем не менее, на данной странице такие явления не рассматривается, поскольку если что-то подобное и имеет место, то его воздействие весьма мало и не оказывает никакого заметного влияния ни на одиночные гидроудары (в трубопроводах), ни на множественные повторяющиеся гидроудары в гидравлических таранах (там они происходят в условиях проточного движения рабочего тела и с относительно большим периодом, обычно раз в несколько секунд). Гидроудары исследовались многими людьми в течении многих лет, и явные аномалии давно были бы замечены. Не влияют подобные явления и на расчёт параметров единичного рабочего цикла в случае частых повторных гидроударов. Однако в условиях частого (десятки и сотни раз в секунду) повторения в замкнутом объёме циркулирующего рабочего тела результаты таких эффектов могут суммироваться и проявляться вполне ощутимо. В таком случае, резонно с их помощью попытаться объяснить работу некоторых конструкций Виктора Шаубергера и, возможно, Ричарда Клема, — а тогда эти явления требуют подробного и тщательного изучения. ♦
Источник: http://dealanenergo.ru/Statiy/gidrotaran-vodyanoy-nasos-bez-lektrichestva
насос для откачки воды без электричества
Вы здесь
Страницы
- 1
- 2
- 3
- 4
- 5
- следующая ›
- конец »
Вопросы задавать можно только после регистрации. Войдите или зарегистрируйтесь, пожалуйста.
всем привет . можно сделать насос для откачки воды из 200 литровой бочки .для тех у кого нет эл .ва . или для полива из водоема . и т.д . возьмите бочку .крышка должно быть герметичная . в низу просверлить отверсвие и приварить.можно прикрутить сгон с шаровым краном . также сделать на верху получится бочка с 2 отводами 1 сверху другой с низу . на сгоны одеть шланги длина на ваше усмотрение . нижний кран закрыть .залить водой бочкудо верха .закрыть крышку герметично . верхний шланг отпустиь в водоем или яму из которой хотите выкачать жидкость.нижний шланг направить туда куда вам надо . откройте кран . под давлением воды с низу вода будет уходить создавая вакум и заоодно засасывая через верхний шланг другую воду с низу уходит а с верху будет доливатся . ..всем удачи
Интересная технология. А в практике она воплощена? Если да, то какова производительность таклгл насоса?
На ютубе есть ролик (http://www.youtube.com/watch?v=HLzBTBeS4yU), вот это реально вечный двигатель основаный на принципе гидротарана. Может кто-нибудь знает как его сделать??
привет пока не сделал но в принципе реально . по работе много дел дай бог в течении 2 недель наши сантехники сделают . что выйдет выставлб фото .
система работать не будет — труба отливная(на поверхности), выше заливной(в яме). В бочке создается разрежение, а легче воздуху войти через отливную трубу, чем воде через заливную
У меня тоже возникли сомнения. Нашел статью в которой описана подобная система, дак здесь наоборот доказывается, что такой насос не будет работать, но возможно и стоит поэксперементировать!
Передвижная автопоилка с вакуумным регулированием уровня воды в корытах
Учитывая, что содержание животных в загонах проходит круглосуточно практически без участия чабанов, конструкция автопоилки должна обеспечи-вать автоматическое регулирование уровня воды в водопойных корытах по мере потребления ее овцами при свободном доступе животных к ним в течение суток.
Для этих целей разработана конструкция и изготовлена передвижная пастбищная автопоилка для овец. Автопоилка состоит из емкости 1, вместимостью 8 куб.м, заливной горловины 2, люка для очистки 3, сливной горловины 4, вентиля 5, вакуумной трубки 6, лестницы 7. Автопоилка имеет два водопойных корыта 8,установленных на регулируемых по высоте стой-ках 9. Вода к корытам подводится через шланги 10, а уровень ее регулируется системой: вакуумная трубка 6, вакуумпровод 11, демпфер 12, перекрывающий доступ воздуха в емкость, в которой создается разряжение и прекращается слив воды. Емкость автопоилки установлена на полозьях 13 и с помощью петель 14 ее можно буксировать по загонам пастбищ. В транспортном положении водопойные корыта навешивают на емкость посредством креплений 15.
Регулируемые по высоте стойки 9 позволяют не только обеспечить одинаковый уровень воды в обоих водопойных корытах, но и подстраивать их для животных любого возраста.
С учетом расположения автопоилки в центре схождения четырех смеж-ных загонов пастбищ, она обеспечивает водой при вольном доступе к ней 600 голов животных в течение трех суток.
Затраты труда на поение овец из новой автопоилки в 2,6 раза меньше, чем при традиционном способе поения.
русхоз, надеюсь у тебя что-нибудь получится. Ждем фотоотчет.
летом я хочу сделать уличные поилки для овец . крс и птицы хочу посиавить корыта пластиковые .те которые продают на рынках строительных. закрепить к брусу (рама) подвести трубы . и сделать систему бочка унитаза . выпили воду поплавок сработал наполнил и отключил воду . все реально до зимы . а воду с бочки на высате само слив . только подкачивать из колодца
У меня тоже возникли сомнения. Нашел статью в которой описана подобная система, дак здесь наоборот доказывается, что такой насос не будет работать, но возможно и стоит поэксперементировать!
Передвижная автопоилка с вакуумным регулированием уровня воды в корытах
так это же совсем разные вещи. в автопоилку наливают воду насосом, а выливается она самотеком. Вакуум только не дает воде вылиться всей сразу
всем привет . можно сделать насос для откачки воды из 200 литровой бочки .для тех у кого нет эл .ва . или для полива из водоема . и т.д . возьмите бочку .крышка должно быть герметичная . в низу просверлить отверсвие и приварить.можно прикрутить сгон с шаровым краном . также сделать на верху получится бочка с 2 отводами 1 сверху другой с низу . на сгоны одеть шланги длина на ваше усмотрение . нижний кран закрыть .залить водой бочкудо верха .закрыть крышку герметично . верхний шланг отпустиь в водоем или яму из которой хотите выкачать жидкость.нижний шланг направить туда куда вам надо . откройте кран . под давлением воды с низу вода будет уходить создавая вакум и заоодно засасывая через верхний шланг другую воду с низу уходит а с верху будет доливатся . ..всем удачи
эта система будет работать если конец сливноого шланга будет ниже того уровня откуда выкачивать надо, собственно ни какого нухау нету, можно просто взять шланг заполненный жидкостью и также краны присобачить
вчера варили соски и краны . заполнили водой .подняли погрузчиком на 3 м открыли . один конец в речку засасывающий другой в сторону . в результате шланг который в речке сплюшился нет засоса . снял шланг прикрутили металопласт. стало наоборот сливной нижний сплющило. что то не то . на этом опыты закончили настроение пропало . есть еще один вариант нижнюю трубу увеличить в диаметре . не шлангом а трубой и через так называемое нижнее корыто . в низу надо сделать бочку куда будет сливатся вода с низу а с верху уходить так можно добится того что воздух не будет засасывать через низ . будт время попробуем еще
Не будет работать, как физик говорю.
виктор а с чем это связано что не получится . меня один уверял что сам видел в таджикистане такон приспособление . . там мудрецов хватает . . придумали из 200 литровой бочки соломорезку . на дне движок и лопасти . .думаю все гениальность в простате . . будем пробовать .
В простате только муки для мужчины и неудовлетворённость для женщины, извините, не удержался.
Насчёт того что кто-то видел — мне тоже один человек яростно доказывал что уезжал в отпуск, забыл закрыть холодильник, и по приезду дома была свежесть и прохлада, как от кондиционера. Хотя в некоторых условиях я такого не исключаю. Но холодильник всё же считается нагревательным прибором. Так как греет он сильнее чем охлаждает.
А работать она не будет по такой причине.
Есть такая штука как закон сообщающихся сосудов, говорит он о том, что в двух сообщающихся сосудах уровень воды одинаков. Получается из-за того что один столб жидкости уравновешивает другой.
Теперь посмотрим на данный «насос».
Бочка, две трубки, входная и выходная. Бочка где-то стоит.
Столб воды во входной трубке будет выше чем в выходной, а чтобы «качало» нужно чтобы выходной столб «перевешивал», был блинее. Иначе за счёт чего он будет поднимать жидкость?
В вакуумных поилках совсем другой принцип и сравнивать некорректно.
вот я тоже интересовался таким насосом и читал в каком то журнале но сейчас так и не нашел но схемку нарисовал.
немного добавлю по запуску . чтоб не качать полную бочку можно налить воды и развести костер до кипение воды, пар выдавит воздух а когда он остынет то образуется вакум он и закачает воду с скважены примерно на половину бочки при открытии крана на чуть чуть вода будет вытекать создавая разряжение которое будет закачивать воду. при заполнении накопительной бочки выше поливочного шланга сработает принцип сифона и вода откачается до дна. итак до бесконечности.
производительность маленькая точно не скажу не помню.
сам не пробовал но собераюсь в мае бурить скважену и хочу испытать. все вычетано в журнале.
Файлы:
56457477.png
Запомни: лучше день потерять, потом за пять минут долететь
мой канал https://www.youtube.com/channel/UC1vTkviCAeiA9Z4yTOHM7uQ
а если сделать так чтоб обьем воды в заборной трубе был меньше чем обьем воды в бочке?
еше нюанс помоему там была 200 л бочка но узкая, а самое главное это проходное сечение сливной трубки меньше заборной и кран открывать надо совсемь малость
Запомни: лучше день потерять, потом за пять минут долететь
мой канал https://www.youtube.com/channel/UC1vTkviCAeiA9Z4yTOHM7uQ
а если сделать так чтоб обьем воды в заборной трубе был меньше чем обьем воды в бочке?
еше нюанс помоему там была 200 л бочка но узкая, а самое главное это проходное сечение сливной трубки меньше заборной и кран открывать надо совсемь малость
Я сомневаюсь что ухищрения с размерами и диаметрами помогут, приведу аналогию, не прямую, но станет понятней.
Представьте женщину, кто не хочет женщину, пусть представит мужчину, с коромыслом и двумя вёдрами.
Коромысло будет перевешивать на одну сторону только в том случае, если в ведре с этой стороны будет больше воды.
Так и тут.
Две трубки, в каждой столб воды и бочка, грубо говоря, это нормаль, т.е. уровень для отсчёта. Обратите внимание, что речь идёт о чисто вертикальной длине столба воды, т.е. перепад высот от бочки до выхода из шланга. Качать будет только в том случае, если вертикальная длина выходной трубки и следовательно столб воды в выходной трубке будет больше чем во входной. Тогда получится что вода в выходной трубке будет двигаться вниз из-за гравитации и будет действовать как поршень насоса, в бочке давление будет понижаться и если бочка и сами трубки будут жёсткими, то во входной трубке будет некоторое разряжение по отношению к обычному атмосферному давлению. В этом случае конструкция будет работоспособна, но я не особо понимаю зачем надо усложнять конструкцию, бензин из бака автомобиля сливали же хоть раз? Всё получалось без бочки отлично.
Где бы ты не был, ФЕРМЕР.RU всегда с тобой!
в журнале моделист конструктор попадался еше насос без электричества за счет разности температуры воды из скважены и наружного воздуха производительность тоже маленькая но это 100% рабочая схема воплошеная.
а по прошлой схеме может вы и правы я просто не задумывался а привел описания с журнала.
Запомни: лучше день потерять, потом за пять минут долететь
мой канал https://www.youtube.com/channel/UC1vTkviCAeiA9Z4yTOHM7uQ
Видимо там система как у само-подводящихся часов, т.е. какая-то мембрана движется, скорее всего биметалическая и за счёт этого подкачивается вода.
Где бы ты не был, ФЕРМЕР.RU всегда с тобой!
там принцеп за счет расширения газа метана который закачан в резиновый резервуар (находяшийся в закрытом пространстве) соедененый с радиатором и при раширении ввыталкивает воду которая вылевается на радиатор охлаждая газ, он уменьшается в обьеме и закачивает воду.
если интересно могу нарисовать по памяти схемку работы если не найду оригинал но не ранее завтрешнего вечера.
Запомни: лучше день потерять, потом за пять минут долететь
мой канал https://www.youtube.com/channel/UC1vTkviCAeiA9Z4yTOHM7uQ
Да я примерно понял, не стоит рисовать, разве что других может заинтересовать.
Где бы ты не был, ФЕРМЕР.RU всегда с тобой!
Я одно понял — бочка нужна чтобы создать поток. Например при откачке из канализации чтобы ртом не создавать разряжение (по аналогии с бензином), пока вода в бочке есть система работает. Виктор все доходчиво пояснил насчет столба воды, иначе действительно вечный двигатель получается.
действительно вечный двигатель получается.
Вот нашёл пару схем вечных двигателей эксплуатирующих перепад уровней, правда того который хотел не нашёл.
Вот практически наша бочка:
Тут Архимедов винт для подъёма воды:
Где бы ты не был, ФЕРМЕР.RU всегда с тобой!
ПРИВЕТ СЛИВНАЯ ТРУБА КАКОГО ДИАМЕТРА . А ТО У МЕНЯ СПЛЮЩИВАЛО ШЛАНГИ . . И КОСТЕР СКОЛЬКО ВРЕМЕНИ ДОЛЖЕН ГОРЕТЬ . ПОСТОЯННО ИЛИ ДО ПОДКАЧКИ ВОДЫ . .ТАКОЙ НАСОС НЕОБХОДИМ ДЛЯ ПОЛИВА ОГОРОДА . ПОЛИВАЙ ЧТО УГОДНО . ЖИВНОСТЬ ПОИ И .Т .Д .
по костру написано что он нужет только для того чтоб вода закипела и пар вытеснил воздух , потом костер затушить и когда бочка начнет остывать то пар сконденсируется и образуется вакум который закачает воду со скважены.
в дальнейшей работоспособности этого агрегата я сомневаюсь.
надо лопатить моделиста конструктора и искать описание насоса основаного на расширении газа метан-пропан.
Запомни: лучше день потерять, потом за пять минут долететь
мой канал https://www.youtube.com/channel/UC1vTkviCAeiA9Z4yTOHM7uQ
В Юном технеке 80годов статью видел.
Бочка 200литров-по краям с обеих сторон приварины лопасти как у катамарана , на взгляд ширина сантиметров 20-30. Между лопостями намотон шланг без зазоров с выходом на ось (как в садовых барабанах для полива). По центрам бочки оси , одна из них отводом для воды. Бочка закреплена так -чтоб течение реки крутило её как можна сильнее (на быстрине или другом месте где сильнее течение).
Крепление бочки не помню, толи на верёвках ,толи на жёстких тягах.
Лопасти крутят бочку, у шланга много витков вокруг бочки, захват воды идёт через шланг пока он под водой гонится лопастями бочки ( бочка крутится как барабан). диаметра шланга хватает как по резбе создать давление — вроде 20метров в верх.
Тяжело передать мысль в текст.
Бочка крутится захватывает шлангом воду и при этом создаёт давление которое зависит от скорости течения реки.
предлагаю моддернизировать вот такую конструкцию насоса.
за место рычага механической прокачки воды заменить на работу газа.
Файлы:
321123.doc
Запомни: лучше день потерять, потом за пять минут долететь
мой канал https://www.youtube.com/channel/UC1vTkviCAeiA9Z4yTOHM7uQ
за счет нагрева газа будет оно будет 2-3 литра в день качать.
можно на глушак авто одеть шланг, который идет к диффузору , -гдето на опрыскивателях видел такие, -быстрее факт будет
можно на глушак авто одеть шланг, который идет к диффузору
это сколько бензина надо спалить , проше купить или сделать мотопомпу, а весь интерес заключается в том чтоб можно было запустить водокачку и забыть про полив пусть даже за сутки она качает бочку воды но зато без участия и контроля.
Запомни: лучше день потерять, потом за пять минут долететь
мой канал https://www.youtube.com/channel/UC1vTkviCAeiA9Z4yTOHM7uQ
всем привет . можно сделать насос для откачки воды из 200 литровой бочки .для тех у кого нет эл .ва . или для полива из водоема . и т.д . возьмите бочку .крышка должно быть герметичная . в низу просверлить отверсвие и приварить.можно прикрутить сгон с шаровым краном . также сделать на верху получится бочка с 2 отводами 1 сверху другой с низу . на сгоны одеть шланги длина на ваше усмотрение . нижний кран закрыть .залить водой бочкудо верха .закрыть крышку герметично . верхний шланг отпустиь в водоем или яму из которой хотите выкачать жидкость.нижний шланг направить туда куда вам надо . откройте кран . под давлением воды с низу вода будет уходить создавая вакум и заоодно засасывая через верхний шланг другую воду с низу уходит а с верху будет доливатся . ..всем удачи
всем привет . можно сделать насос для откачки воды из 200 литровой бочки .для тех у кого нет эл .ва . или для полива из водоема . и т.д . возьмите бочку .крышка должно быть герметичная . в низу просверлить отверсвие и приварить.можно прикрутить сгон с шаровым краном . также сделать на верху получится бочка с 2 отводами 1 сверху другой с низу . на сгоны одеть шланги длина на ваше усмотрение . нижний кран закрыть .залить водой бочкудо верха .закрыть крышку герметично . верхний шланг отпустиь в водоем или яму из которой хотите выкачать жидкость.нижний шланг направить туда куда вам надо . откройте кран . под давлением воды с низу вода будет уходить создавая вакум и заоодно засасывая через верхний шланг другую воду с низу уходит а с верху будет доливатся . ..всем удачи
всем привет . можно сделать насос для откачки воды из 200 литровой бочки .для тех у кого нет эл .ва . или для полива из водоема . и т.д . возьмите бочку .крышка должно быть герметичная . в низу просверлить отверсвие и приварить.можно прикрутить сгон с шаровым краном . также сделать на верху получится бочка с 2 отводами 1 сверху другой с низу . на сгоны одеть шланги длина на ваше усмотрение . нижний кран закрыть .залить водой бочкудо верха .закрыть крышку герметично . верхний шланг отпустиь в водоем или яму из которой хотите выкачать жидкость.нижний шланг направить туда куда вам надо . откройте кран . под давлением воды с низу вода будет уходить создавая вакум и заоодно засасывая через верхний шланг другую воду с низу уходит а с верху будет доливатся . ..всем удачи
Ничего не понимаю.
Наверно я тупею.
Вы хотите поднять воду выше уровня водоёма .
Течение или другие силы природы, на которые можно расчитывать, есть?
Или ВЫ расчитываете на электричество, уголь, дрова, газ, и т.д.
Вакум бочки от раздницы температур??
Источник: http://fermer.ru/forum/samodelkin-ratsionalizator/115398
Водяной насос,без электричества своими руками
База самоделок для всех!
- Главная
- Самоделки
- Дизайнерские идеи
- Видео самоделки
- Книги и журналы
- Партнеры
- Форум
- Самоделки для дачи
- Приспособления
- Автосамоделки
- Электронные самоделки
- Самоделки для дома
- Альтернативная энергетика
- Мебель своими руками
- Строительство и ремонт
- Для рыбалки и охоты
- Поделки и рукоделие
- Самоделки из материала
- Самоделки для ПК
- Cуперсамоделки
- Другие самоделки
Водяной насос без электричества своими руками
Никакого преувеличения. В самом деле, чинно проплывающие за рекам и каналам буксиры и теплоходы, быстрые суда на подводных крыльях способны поливать прибрежные сады да огороды, при этом даже без ведома капитанов. Волновой насос, изобретенный столичным инженером П. Радченко, необычно удобен для тех, кто проживают рядом с оживленными водными магистралями.. Ну а как же быть, в случае если по соседству, скажем, лишь пруд, маленькая речушка, где судоходства и в помине нет? Не беспокойтесь: ведь в этом месте поверхность воды нечасто бывает спокойной. Поглядите, как, например, болтаются около берега оторвавшиеся от плота деревья-гиганты, трутся о причал тяжело груженные баржи, и все это тогда, когда, казалось бы, и ветра практически не имеется никакого.
Механизм насоса следующий. Отрезок латунной гофрированной трубы 1-м концом подвешивают на кронштейн вбитой на дно сваи, другим фиксируют к плавающему в реке бревну. С обеих сторон он закрыт втулками вместе с клапанами.
Набегающая волна поднимает и опускает бревно, сжимая и разжимая железную трубу-гармошку. Следует влить туда воду, и клапаны в тот же миг придут в действие, насос заработает.
Невзирая для несложность конструкции, она даёт напор более 4 атм. , а также производительность 25—100 тонн воды в сутки — при подходящей погоде, разумеется. А так как для того чтобы волны раскачали бревно, хватает ветра мощностью 2 м/с, то насос трудится с очень малыми перерывами.
В случае если применяется гофрированная латунная труба 56 X 0,8 мм, колода надо весить 60—80 кг. Чтобы подъемник никак не вышел из строя при очень сильном волнении, к стойке фиксируют направляющую вместе с ограничителем в форме кольца. Пропущенный сквозь него болт оканчивается в бревне под накладной сферической головкой. Это даёт возможность бревну немного поворачиваться в горизонтальной плоскости, что исключает возникновение ненужного крутящего момента. Втулки ввинчивают в наконечники, впаянные в концы трубы. Клапаны, простые с резиновыми седлами. В рабочем положении труба должна быть натянута перед весом бревна.
Где же взять латунную трубу да еще и гофрированную? Думается что она со временем под тяжестью может выпрямиться. Может вариант с пластиковыми трубами типа сантехнических под раковиной (только размером больше) с пружиной, которую можно через сезон поменять если растянулась.
Я вообще так думаю, что это трубу можно заменить гофротрубой, такие для вытяжек продают, у них внутри металлическая пружина, я думаю что она должна долго прослужить.
Источник: http://prosamodelki.ru/samodelki/samodelki-dlya-dachi-ogoroda/vodyanoy-nasos-bez-elektrichestva-svoimi-rukami
Как поднять воду на высоту без электрического насоса
“Как добыть воду из скважины без насоса”, БК “ПОИСК”, рассказать друзьям:
Размещено 23.05.201521.05.2017 БК “ПОИСК”
Известно, что теоретически всасывающий насос не способен поднять воду с глубины более 8-9 метров.
На практике это расстояние еще меньше — 6-7 м, а для создания достаточного напора в системе водоснабжения будет лучше, если зеркало воды находится на расстоянии 5 м от поверхности.
Существует несколько способов решения проблемы подъема воды для насосной станции. Рассмотрим один из них.
Увеличение давления внутри скважины
Увеличение давление внутри скважины обусловит самопроизвольный подъем воды по трубе даже при отсутствии насоса.
Если загерметизировать устье обсадной колонны оголовком и подать воздух в скважину при помощи компрессора, вода начнет подниматься вверх, испытывая отсутствие давления в водоподъемной трубе.
Правда, специалисты предупреждают, что при таком способе добычи воды из скважины, необходимо учитывать следующие факторы:
- глубину залегания водонасыщенного пласта;
- производительность водоносного горизонта;
- дебит скважины;
- особенности геологического строения участка.
В противном случае можно нарушить работу скважины, так как избыточное давление в обсадной колонне не позволит воде из водонасыщенного пласта поступать в скважину.
То есть воздушная подушка между оголовком и зеркалом воды начнет толкать водяной столб вниз до полного его вытеснения из обсадной колонны обратно в водоносный пласт. Оптимальнее использовать компрессор в тандеме с насосной станцией.
Даже незначительный рост давления в скважине увеличит мощность всасывания насоса.
Из недостатков такого способа доставки воды следует отметить шумную работу компрессорной установки.
Учитывая, что сама насосная станция отличается повышенной шумностью, потребуется разместить оборудование в помещении с хорошей звукоизоляцией.
Следует помнить еще одну особенность работы автоматической насосной станции: двигатель включается автоматически, как только давление в гидроаккумуляторе упадет ниже заданного.
Электропитанием управляет реле давления, на котором и выставляется уровень давления включения и выключения насоса.
При выключенном двигателе вода расходуется из накопительного резервуара гидробака, и при уменьшении давления реле вновь включает насос.
Отсюда следует, что насосную станцию и воздушный компрессор необходимо объединить в одну электрическую схему, чтобы по команде реле давления электропитание одновременно подавалось и на насос, и на компрессор.
“Как добыть воду из скважины без насоса”, БК “ПОИСК”, рассказать друзьям: Май 21st, 2017
Подача воды без электричества
Если вы решаете, как поднять воду на высоту, без насоса вам не обойтись. Только для подъема придется использовать не электрические, а ручные самодельные устройства, для работы которых потребуется приложение мускульной силы или энергия текущего водного потока.
Особенности скважины без насосного оборудования
Буровые колодцы могут быть двух типов: песчаные и артезианские. Первый тип имеет и другое название – фильтровая скважина. Бурится она до ближайшего водоносного слоя в песчаном грунте. Глубина может достигать 30 метров, а ширина обсадной трубы может быть около 13 см.
Особенность строения такого источника в том, что на стенках трубы делается сетчатый фильтр. Для добычи воды из неё требуется глубинный или поверхностный агрегат. Прослужить она может около 15-ти лет.
Но срок службы в первую очередь зависит от глубины залегания водоносного слоя и от того, насколько интенсивно она используется.
Строительство домов
Во втором кольце колодца делаем отверстие для трубы. Кстати, можно использовать пластиковые трубы, ПВХ, полиэтиленовые, полипропиленовые, стальные и другие. Желательно выбрать те, которые не трескаются от мороза. Соединяем трубы диаметром 32 мм между собой. На дно траншеи насыпаем слой песка 15 см.
Чем качать воду, когда нет электричества
Другое дело — колодец или близлежащий водоём. В случае узкой скважины лучше применить поверхностный насос мембранного типа. Только помните, что мембранный насос чувствителен к качеству воды. Наряду с их несомненными достоинствами, у низковольтных насосов постоянного тока есть и существенные недостатки.
Первый из них — малая производительность. Так, насос «Barwig BWV 01» выдаст вам примерно 15 л. воды в минуту.
Прикиньте, сколько времени придётся наполнять резервуар ёмкостью 3 кубометра — больше трёх часов! За это время аккумулятор вашей машины может благополучно умереть, если время от времени не заводить двигатель.
Насос для откачки воды без электричества
Для этих целей разработана конструкция и изготовлена передвижная пастбищная автопоилка для овец. Автопоилка состоит из емкости 1, вместимостью 8 куб.м, заливной горловины 2, люка для очистки 3, сливной горловины 4, вентиля 5, вакуумной трубки 6, лестницы 7. Автопоилка имеет два водопойных корыта 8,установленных на регулируемых по высоте стой-ках 9.
Вода к корытам подводится через шланги 10, а уровень ее регулируется системой: вакуумная трубка 6, вакуумпровод 11, демпфер 12, перекрывающий доступ воздуха в емкость, в которой создается разряжение и прекращается слив воды. Емкость автопоилки установлена на полозьях 13 и с помощью петель 14 ее можно буксировать по загонам пастбищ.
В транспортном положении водопойные корыта навешивают на емкость посредством креплений 15.
Рекомендуем прочесть: Вымогательство коллекторами статья
Водоснабжение дома – как правильно подвести воду в частный дом
- выкопать шахту колодца. Чтобы удешевить работу обычно этот выполняется вручную. Определить размеры шахты можно таким образом: вымерять диаметр бетонных кругов, замерять их толщину и добавить 10-15 см. на засыпку. Тогда при диаметре круга в 1 м и толщине в 10 см – диаметр шахты будет составлять 1,4 м. Если планируется применять другой материал, например, кирпич, то достаточно обозначить желаемый диаметр колодца и прибавить к нему две толщины материала;
- выполнить отделку колодца – внутреннюю и внешнюю.
Сразу возникает вопрос — что за скважина и, следовательно, с какой глубины нужно достать воду? Сразу скажу, что вопрос этот меня тоже интересует и ответа на него я пока не нашел. Механический насос на «ручной тяге» поднимает воду максимум с 30 м (ну или, по крайней мере, других я в сети не нашел).
Вода течет вверх
Клапанный механизм воздушного бака (рис. 2) работает следующим образом. Поступающая по трубе 3 вода, вытесняя воздух в напорный бак, заполняет воздушный бак..
Поднявшись в нем до верхнего уровня цилиндра, вода поднимет поплавок 10, который закроет клапан 13, преграждая доступ в стакан поплавка 2. Попасть в него она сможет лишь через верхний срез стакана — когда весь воздух будет вытеснен в напорный бак.
При заполнении стакана поплавок своими рычагами откроет воздушный и сливной клапаны, сообщая напорный бак с атмосферой, а воздушный — со сливным патрубком 14. Клапаны останутся открытыми до тех пор, пока бак не опорожнится.
И только когда вода через небольшое отверстие 12 вытечет из цилиндра 11, поплавок 10 откроет своим рычагом сливной клапан 13 стакана. Поплавок 2 опустится, закроет клапаны 8 и 15 — бак снова готов к работе.
Поисковый интернет-портал садоводческих и дачных товариществ — снежинка
На взгляд теплотехника, новое устройство представляет собой простейший случай тепловой машины.
Именно тот, с которого Сади Карно начал свои знаменитые теоретические исследования: машина, чтобы производить работу, должна иметь по меньшей мере два тепловых источника: нагреватель — с высокой температурой и холодильник — с низкой.
В обычных устройствах они разделены, и можно точно сказать, где что находится. А где холодильник и нагреватель в устройстве Радченко!
Рекомендуем прочесть: Как получить бесплатно жилье от государства
Как организовать бесперебойную подачу воды на даче: устройство водоснабжения своими руками
Такой колодец вы можете выкопать сами. Однако для этого нужен хотя бы небольшой опыт строительства и свободное время. Если вы ничего не знаете о бурении, лучше обратитесь к специалистам. Это сэкономит не только время, но и нервы.
Впрочем, вы можете обратиться и к местным умельцам – они сделают все качественно и недорого. Неоспоримые достоинства колодца – простота и удобство в использовании. Доступ к воде осуществляется посредством электронасоса или ручного ворота.
Шахтный колодец может служить и в зимнюю пору, если вы утеплите его чем-нибудь, например пенополистиролом.
Горячая вода на даче: использование электрических систем, печей и баков
Дело в том, что он полностью использует инфракрасное солнечное излучение, благодаря которому и осуществляется нагрев. Для этого на свободном от тени месте устанавливают бак для воды для дачи, который покрывают черной краской. В солнечные дни вода в нем нагревается за несколько часов и вполне годится для принятия душа.
Как организовать водоснабжение из скважины: два способа подачи воды в частный дом
Устройство песчаной скважины проводится бурением вглубь грунта на 10-50 м, пока не достигнут водоносный песчаный слой. После ее облагораживают, укрепляют с помощью труб и погружают насос, подающий воду в коттедж. Подходит для водоснабжения небольших дачных домов со средним расходом до 1,5 м 3 /ч и суточным 500 л.
Схема водоснабжения в частном доме — основные виды и особенности
От того, насколько грамотно спроектирована и надежно смонтирована схема водоснабжения частного дома, зависит комфорт всех, кто в нем проживает. Во многих случаях у владельца существует выбор между несколькими альтернативными вариантами. Для того, чтобы не отдавать предпочтение одному из них вслепую, важно тщательно изучить все особенности, преимущества и недостатки.
Водопровод для дачи своими руками
- Оборудование скважины, то есть обсадная труба и оконечник;
- Погружной насос;
- На насосе устанавливается ниппель с обратным клапаном. Этот клапан предотвращает обратное попадание воды в насос;
- Водяной адаптер – с него осуществляется прокладка водопровода к даче;
- Кроме всего прочего, насос оборудуется стальным тросом, с помощью которого этот насос опускается в пробуренное отверстие и поднимается из него;
- Провод питания насоса так же выводится наружу и подсоединяется к источнику питания.
Садовый насос без электричества и механики
В горловину завертывается пробка. В ней просверлено отверстие диаметром 30—40 мм, в которое вставлен и приварен штуцер соответствующего диаметра. На штуцер надет шланг. Второй конец шланга опускается в водоем или неглубокий колодец. Все соединения должны быть герметичными.
78. Высота всасывания насоса
78. Высота всасывания насоса |
Мы уже говорили, что в некоторых случаях для работы конденсаторов водяного охлаждения средней и даже большой производительности может использоваться проточная вода, отбираемая из скважины (колодца), реки или моря.
Холодильные агрегаты при этом размещаются в машинных залах, которые, как правило, расположены выше уровня воды. Для того, чтобы воду подать в конденсатор, ее необходимо забрать с уровня, лежащего ниже входа в насос (см. рис. 78.1).
Это довольно сложная задача, для решения которой нужно ответить на ряд вопросов:► Где лучше расположить насос?► С какой глубины насос сможет поднимать воду?► С какими проблемами при этом можно столкнуться?Напомним, что такое всасывание жидкостиДля того, чтобы понять, что такое всасывание, давайте сядем за столик кафе и закажем фруктовый сок, который начнем смаковать с помощью соломинки. Мы всасываем сок через соломинку, он поднимается из бокала и попадает к нам в рот. Но почему это происходит, вы можете объяснить?Движущей силой, которая помогает соку подняться по соломинке, является атмосферное давление.Атмосферное давление Ра давит на поверхность сока в стакане. Всасывая его через соломинку, мы создаем внутри нее разряжение Р1, которое помогает соку подниматься.Таким образом, явление объясняется просто созданием разности давлений: АР = Ра — Р1.Без атмосферного давления втягивать сок через соломинку было бы невозможно.Правда, есть и еще один путь. Стакан нужно герметично закупорить и подать в него под давлением какой-либо газ.Такой способ используют при розливе пива…
На какую высоту можно поднять жидкость?
Если у вас очень мощные легкие, вы можете взять соломинку длиной около метра и начать смаковать сок стоя (см. рис. 78.4). Вы должны будуте сделать очень глубокий вдох, но не надейтесь создать разряжение меньше -0,1 бар. Создавая разряжение -0,1 бар, можно поднять жидкость на высоту около 1 м (если это вода).
Чтобы создать более сильное разряжение, возьмем, например, вакуумный насос. На какую же высоту он поднимет жидкость: 5 м, Юм, 20 м, 100 м?Давайте возьмем очень высокопроизводительный вакуумный роторный насос (см. рис. 78.5).Соединим несколько таких насосов последовательно, чтобы попытаться достичь вакуума, близкого к абсолютному нулю.
Сможем ли мы тогда поднять воду на высоту 100 м, 200 м и даже больше?
Немного об атмосферном давлении
В общем случае давление вызывается взаимодействием твердых, жидких или газообразных тел*. Например, чем больше газа закачивают в герметичный сосуд, тем выше в нем становится давление.Наиболее известное применение этого явления – автомобильная шина. В отсутствии материальных частиц никакого давления не будет.
В частности, в космическом пространстве, где очень мало частиц, давление близко к абсолютному вакууму.Абсолютный вакуум характеризуется полным отсутствием материальных частиц (газа или жидкости, в зависимости от того, что нас интересует): в этом случае мы говорим, что абсолютное давление равно нулю.
Безусловно, чем выше мы поднимаемся в воздушном слое над поверхностью Земли, тем меньше становится атмосферное давление. На высоте 2000 м атмосферное давление соствляет только 0,77 бар.Таким образом, минимально возможное давление соответствует полному отсутствию вещества, то есть отсутствию атмосферного давления.
Тогда считают, что избыточное давление, то есть превышение давления по отношению к атмосферному, равно -1 бар (или 0 бар абсолютных). Ниже абсолютного нуля давления быть не может, так как из ничего нельзя отнять ничего: давления -2 бар или -3 бар не существует!В колодце на воду действует атмосферное давление.
Когда насос создает разряжение в погруженной в воду трубе, это давление заставляет воду подниматься вверх. Отсюда следует, что даже если на входе в насос создать давление, равное абсолютному нулю (что невозможно), вода не поднимется выше, чем на 10,33 м.
Даже если бы насос мог создать абсолютный вакуум, высота подъема воды выше 10,33 м невозможна!Никакой, даже самый совершенный насос, не сможет всасывать воду из колодца, уровень воды в котором расположен ниже уровня входа в насос на 10,33 м.В реальности же эта разность уровней ограничена еще больше. Каким бы совершенным ни был насос, его высота всасывания ограничена 6…7 м.
Сейчас мы покажем, почему это так.Попытайтесь додуматься до этого сами, прежде чем читать дальше?* В отечественной технической литературе давление определяется как нормальная составляющая взаимодействия двух тел или воздействия одной части тела на другую (см., например, Краткий политехнический словарь. ГИТТЛ. – М: 1956 г. – 1136 с.) (прим. ред.).**Абсолютный нуль давления принципиально недостижим (прим. ред.).
Почему насос не может всасывать воду с уровня ниже 6…7 м?
7°) Влияние атмосферного давления.Мы уже говорили о том, что атмосферное давление зависит от высоты местности. Именно оно является движущей силой, обеспечивающей подъем воды в трубе.На высоте 2000 метров атмосферное давление не больше, чем 0,77 бар.Таким образом, насос, установленный на поверхности колодца, находящегося на этой высоте, не сможет поднять воду с уровня более 7,7 м.Следовательно, при подборе насоса необходимо учитывать высоту местности (см. рис. 78.8).2°) Влияние потерь давления.Прежде всего, попробуем объяснить, что такое сетка с обратным клапаном* и в чем заключается ее назначение. Допустим, что насос работает и обеспечивает заданный расход жидкости.В какой-то момент насос выключили. Что при этом произойдет?Насос больше не создает разрежения и вода, которая находится во всасывающей трубе, начнет сливаться обратно в колодец.В результате труба опустошится. При последующем запуске, перед тем, как вода поднимется к крыльчатке, насос должен вначале создать разрежение воздуха, попавшего в трубу после того, как из нее слилась вода.Однако большинство насосов не способно самозаполняться таким образомВместе с тем, длительная работа или слишком частое включение-выключение насоса, работающего, “вхолостую” грозит серьезными поломками.Следовательно, после остановки насоса необходимо обеспечить такие условия, при которых и во всасывающей трубе, и в корпусе насоса оставалась бы жидкость. При последующем запуске это позволит насосу быстро выйти на режим.Может быть, для решения данной проблемы нужно просто попытаться залить воду в насос через специально предусмотренное с этой целью отверстие в его корпусе?По большому счету, без дополнительных устройств такая операция ни к чему не приведет, поскольку вся вода, которую мы будем заливать в насос, стечет обратно в колодец!Чтобы вода осталась в трубе, нужно на конце трубы, в той ее части, которая опущена в воду, установить обратный клапан (см. рис. 78.10). Тогда после каждой остановки вода оставалась бы в трубе (и в насосе) и не было бы необходимости заливать ее в насос.Чтобы сохранить герметичность клапана и защитить клапан от попадания в него песка или грязи, перед клапаном устанавливают металлическую сетку, выполняющую роль фильтра. Это устройство, состоящее из фильтра и обратного клапана, называют кольцом опускной трубы или сеткой с обратным клапаном.Заметим, что потери давления на кольце могут быть довольно существенными, особенно если фильтр загрязнен. Напомним также, что в этом случае появляется опасность работы насоса в режиме кавитации (см. раздел 77).Таким образом, всасывающая труба в сборе со всеми ее поворотами, кольцом, вентилями и клапанами при работе насоса характеризуется существенными потерями давления. Величина этих потерь, в зависимости от длины трубы, ее конфигурации и комплектации может меняться в диапазоне от 0,05 до 0,2 бар (то есть от 0,5 до 2 м вод. ст.).Если потери давления составляют 2 м вод. ст., то на столько же уменьшается и высота всасывания: потери давления напрямую влияют на величину высоты всасывания, поэтому всегда стремятся максимально снизить потери давления.
Влияние вида перекачиваемой жидкости.
Мы знаем, что давление в I бар соответствует примерно 10 м вод. ст., поэтому невозможно всасывать воду с поверхности, которая находится ниже 10 м от входа в насос. Но 1 бар также соответствует и 76 см рт. ст.
: следовательно ртуть нельзя всасывать с уровня ниже 76 см от входа в насосТаким образом, при подборе насоса вы должны принимать во внимание плотность перекачиваемой жидкости (особенно будьте внимательны при подборе насоса для перекачивания водных растворов гликолей, плотность которых зависит от концентрации гликоля).4°) Влияние температуры перекачиваемой жидкости.
В разделе 77 мы узнали, что чем выше температура перекачиваемой жидкости, тем больше опасность перехода насоса в режим кавитации.Высота всасывания Н может быть тем больше, чем ниже температура жидкости, которую мы будем перекачивать. Так, например, вода при температуре 10°С может быть поднята к насосу с более низкого уровня, чем вода при температуре 80°С.
В любом случае следует помнить, что изменения температуры и давления являются опасными факторами, определяющими условия вскипания воды.Центробежный насос не может всасывать газ, поэтому надо всячески избегать таких условий, при которых значения давления и температуры жидкости на входе в насос могут привести к вскипанию перекачиваемой жидкости и возникновению режима кавитации (см. рис.
78.12).5°) Влияние параметра NPSH*.Насоса, настолько совершенного, чтобы всасывать с давлением на входе -1 бар, не существует. Самые лучшие насосы, создающие разряжение -0,8 бар, никогда не смогут поднимать воду с поверхности, лежащей более, чем на 8 м ниже уровня насоса.
Однако конструкторы насосов при проектировании могут управлять этими потерями.
Чтобы предотвратить опасность возникновения кавитации в насосах, конструкторы в документации на свою продукцию указывают минимально допустимое давление на входе в насос (в точке 1), ниже которогопользователь никогда не должен опускаться: это потребная величина параметра NPSH, которая определяется как “абсолютное статическое давление на всасывании”.
Укажем, что эта величина (часто выражаемая в метрах водяного столба) соответствует внутренним потерям давления на крыльчатке насоса между точками 1 и 4.
**Чтобы лучше усвоить абстрактные понятия, о которых мы только что рассказали (влияние NPSH, температуры, вида жидкости, потерь давления, атмосферного давления), попробуем вместе решить одно небольшое упражнение:Для охлаждения конденсатора предлагается использовать грунтовые воды, расположенные на глубине 4 метра.
Потребная величина кавитационного запаса для выбранного нами насоса (NPSH) равна 3 м вод. ст., вода имеет температуру 10°С, потери давления на фильтре и обратном клапане 0,5 м вод. ст., потери давления во всасывающей трубе так же 0,5 м вод. ст. Высота над уровнем моря 1000 м.
► Можно ли использовать выбранный нами насос?► Что произойдет, если фильтр засорится?► Что произойдет, если уровень грунтовых вод понизится на 1 м?* Параметр NPSH (Net Positiv Suction Head) – предельный бескавитационный напор в заданном сечении насоса, введен для уточнения условий бескавитационного режима работы.
Pierre Lecouey в своей работе “Et si nous par-lions pompes?” (Chaud, Froid, Plomberie, juill 1989, № 505, p.
23) определяет его как: “Необходимый абсолютный напор (следовательно, количество энергии), превышающий упругость насыщенных паров (для полного исключения возможности вскипания), которым должна располагать жидкость на входе в колесо насоса для полного предотвращения явления кавитации”.
В отечественной технике используется понятие “Кавитационный запас”, которое определяют зависимостью Ah = (Рн + pVH /2 – Pn)/pg, где Ah – кавитационный запас, м; Рн – давление на входе в насос, Па; р – плотность жидкой среды, кг/м3; Vh – скорость жидкой среды на входе в насос, м/с; Рп -давление насыщенных паров жидкой среды, Па (см. ГОСТ 17398. Насосы. Термины и определения) (прим.
ред.). ** Автор дает достаточно упрощенное объяснение определению величины кавитационного запаса и, в частности, соотношению между кавитационным запасом и потерями давления в колесе насоса. Тем, кто более детально желает ознакомиться с явлением кавитации и методами ее предотвращения, рекомендуем статью Главного конструктора динамических насосов ОАО “Ливгидромаш” Р.
Соколова “Кавитация и ее влияние на работу центробежных насосов”//Строительный инжиниринг, № 3, 2007 г. (прим. ред.).а) Молено ли использовать выбранный нами насос?”Совершенный” насос, если он существует, может всасывать воду с уровня, который на 10,33 м ниже уровня насоса. Допустим, что такой насос мы разместим на уровне А (см. рис. 78.14), при этом высота трубы АР = 10,33 м.
Если на входе в этот насос установить манометр, то он покажет -10,33 м, то есть абсолютный вакуум.Сделаем поправку на кавитационный запас NPSH: минимальное давление на всасывании (кавитационный запас) для выбранного нами насоса должно быть равно 3 м вод. ст.
Чтобы гарантированно получить это значение, нужно опустить наш воображаемый насос на уровень В, то есть на 3 м вниз (BF = 7,3 м).Теперь надо учесть вид жидкости: поскольку мы собираемся перекачивать воду, никакой поправки на вид жидкости делать не требуется.
Поправка на температуру: поскольку температура воды равна 10°С, то при этой температуре опасность вскипания воды ничтожно мала, поэтому поправку на температуру также делать не нужно.Поправка на потери давления: потери давления на фильтре, обратном клапане и во всасывающей трубе равны 0,5 + 0,5 = 1 м вод. ст. Опустив насос еще на 1 метр вниз, в точку С, получим CF = 7,3 – 1 = 6,3 м.
Поправка на высоту: насос будет откачивать водуиз колодца, находящегося на высоте 1000 м над уровнем моря. На этой высоте атмосферное давление ниже, чем на уровне моря на 1,2 м вод. ст.: следовательно, воображаемый насос нужно опустить еще на 1,2 м вниз в точку D. В результате имеем DE = 6,3 — 1,2 = 5,1 м.
Гарантийный запас: чтобы гарантированно не допустить кавитации, заложим в качестве запаса надежности высоту в 1 м. Для этого наш насос опустим еще на 1 м вниз в точку Е. Получим EF = 4,1 м.Таким образом, выбранный нами насос сможет без каких бы то ни было проблем всасывать воду из колодца, уровень воды в котором на 4,1 м низке входа в насос.
То есть, он безусловно может быть использован для подачи воды в конденсатор, поскольку на самом деле уровень воды в колодце только на 4 м ниже уровня входа в насос.б) Что произойдет, если металлическая сетка фильтра забьется грязью (засорится)?Очевидно, что со временем металлическая сетка фильтра будет засоряться. Если потери давления на сетке вырастут, например, до 1 м вод. ст.
, это будет соответствовать ранее установленному гарантийному запасу. Насос обеспечит откачку, но его расход упадет (см. раздел 75).Если фильтр закупорится еще больше и потери давления станут больше, чем 1 м вод. ст., насос может войти в режим кавитации. В этом случае расход воды еще больше упадет и насос начнет работать в неустановившемся режиме.
Если уровень воды в колодце понизится на 1 м, то нас спасет, как и в предыдущем случае, гарантийный запас, и насос, как и ранее, обеспечит откачку воды при условии, что фильтр чистый, однако расход воды уменьшится. Однако, если уровень воды понизится еще больше или засорится фильтр, то произойдет катастрофа!Как откачивать воду с глубины 100 м?Мы только что убедились, на практике насос может откачивать воду с поверхности, расположенной ниже уровня насоса не более, чем на 6…7 м.Чтобы откачивать воду с поверхности, расположенной ниже этого уровня, достаточно погрузить насос на дно колодца, как показано на рис. 78.15. Насос будет легко откачивать воду без всякой кавитации.Для подъема воды на десяток метров никаких проблем не будет. Однако, если вам нужно поднять воду на большую высоту (20 м, 40 м, 100 м и даже больше), то один насос с этим не справится. Одним из решений может стать использование ‘”ступенчатой” схемы, как показано на рис. 78.16. Но такое решение будет достаточно сложным и дорогостоящим.Кроме того, оно не всегда может быть реализовано. Например, как откачать воду с поверхности, лежащей ниже требуемого уровня подъема на 40 м и находящейся в узком колодце?В этом случае можно использовать многоступенчатый насос (см. рис. 78.17), в котором ступени (крыльчатки) автоматически повышают напор при переходе от одной ступени к другой с минимальными потерями (на рис. 78.17 таких ступеней четыре).Представим себе, что каждая ступень создает напор, равный 10 м вод. ст. Вода проходит через первую ступень и давление на входе во вторую ступень уже равно 10 м вод. ст. Во второй ступени напор также равен 10 м вод. ст., следовательно на выходе из нее давление воды будет равно 20 м вод. ст., и так далее.Для получения напора, например, 100 м вод. ст., достаточно иметь 10 ступеней (мы, конечно, немного упрощаем, однако такая технология довольно часто используется, если нужно получить высокое давление – см., например, рис. 78.18).
Если вы хотите получить дополнительную информацию, см. раздел 97.
Давление воды в водопроводе: нормы, как повысить давление
Для бесперебойного функционирования сантехнических приборов необходимо, чтобы давление воды в водопроводе соответствовало определенному показателю, который обычно рассчитывается индивидуально.
Но верные вычисления не гарантируют, что на практике напор воды будет оптимальным. Владельцы загородных домов чаще всего сталкиваются с проблемой малого напора воды в трубах. Решить ее возможно путем внедрения оборудования.
Нормы давления в трубопроводе
Водопроводное давление измеряется в барах. Величина имеет альтернативное название – атмосферная единица. Под напором в 1 бар вода может подняться на высоту 10 м.
В городских сетях обычно давление составляет 4-4,5 бара, чего хватает для обслуживания многоэтажных домов.
По нормативным документам, в частности указаниям сборника СНиП 2.0401-85, допустимое давление для холодной воды варьируется в пределах от 0.3 до 6 бар, для горячей — от 0.3 до 4.5. Но из этого не следует, что давление в 0.3 атмосферы будет оптимальным. Здесь приведены лишь допустимые границы напора.
Жители частных домов вынуждены рассчитывать давление в водопроводе индивидуально. В случае, если система автономная, напор может превышать допустимые по нормативным документам границы.
Он может колебаться в районе 2.5-7.5 бар, а иногда достигать и 10 бар.
Стандартными значениями для нормальной работы системы с насосной станцией считается интервал 1,4 — 2,8 бар, соответствующие заводской установке показателей реле давления.
Если обеспечить чрезмерно высокое давление в системе, то некоторые чувствительные приборы могут выходить из строя или некорректно работать. Поэтому в трубопроводе давление не должно превышать 6.5 бар.
Высокое давление в водопроводе может вызвать протекание трубы, поэтому важно предварительно рассчитывать оптимальный уровень напора самостоятельно
Артезианские фонтанирующие скважины способны выдать напор в 10 бар. Такое давление способны выдержать исключительно приваренные соединения, большинство же фитингов, запорно-регулирующих узлов под его действием разрушаются, в результате чего возникают течи на участках.
Определять, какое необходимо давление воды для нормального функционала водопровода загородного дома, необходимо с учетом используемых бытовых приборов. Некоторые виды сантехнических устройств не работают при низком давлении.
Например, для джакузи необходимо давление 4 бара, для душа, системы пожаротушения — 1.5 бара, для стиральной машинки — 2 бара. Если предусматривать возможность полива газона, то здесь должен быть сильный напор в 4, иногда — в 6 бар.
Бытовые сантехнические приборы, подсоединенные к водопроводу, способны корректно работать исключительно от определенного давления, которое обычно составляет не меньше 1.
Оптимальным показателем давления для загородного дома будет отметка в 4 бар. Такого напора хватит для исправной работы всех сантехнических устройств.
При этом большинство фитингов, узлов запорно-регулирующей арматуры способны его выдерживать.
Давление в 4 бар может обеспечить далеко не каждая система. Обычно для загородных домов давление в водопроводе составляет 1-1.5 бар, что соответствует самотеку.
Причины низкого напора в водоснабжении
В загородные дома вода в водопроводную сеть поступает из колодцев или скважин. Если система полностью автономна, то для создания нужного напора нужно учитывать два момента:
- необходимость обеспечения подъема воды;
- важно производить верно гидравлический расчет и правильно его реализовать на практике — обеспечить необходимое давление в удаленных от водосбора точках и точках, располагающихся на разной высоте.
Из этого вытекает две основные проблемы индивидуальных водопроводов.
- Не хватает ресурсов скважины — дебит отверстия не позволяет поддерживать нормальное давление, а , следовательно, повысить напор.
- Воды в скважине достаточно много, поэтому насосы могут нагнетать высокое давление (до 6 бар), что может привести к разрывам соединений, протечкам, быстрому износу оборудования.
В первом случае насосы качают жидкость, создавая ее циркуляцию до возникновения определенного давления, однако со временем оно ослабевает. Во втором случае нужно подобрать насос с производительностью, которая равна суточной норме потребления воды.
От дебита скважины напрямую зависит напор воды в трубопроводе и ее литраж, поставляемый за одну откачку
Тем не менее, большинство владельцев частных домов волнует вопрос, как грамотно повысить давление в собственном водопроводе, а не понизить его, ведь необходимым дебитом для создания высокого давления обладают лишь некоторые артезианские скважины. Большинство все же отверстий генерируют слабый напор воды, а то и вовсе не способны производить какое-либо давление.
Если в доме используются стандартные бытовые приборы, то достаточно поднять давление до 2.3-2.5 бар — этого волне хватит для их бесперебойного одновременного функционирования с хорошим напором. Если в доме предусматривается джакузи или система полива, то здесь необходимо более высокое давление.
Для измерения давление используется прибор манометр. Его покупают отдельно и встраивают на точке входа воды в дом. Также туда же устанавливают счетчик воды. Некоторое оборудование идет в комплектации с манометром. Например, обогревательный котел, если предусматривается ГСВ.
Принцип регулировки давления водопроводных сетей частных домов такой же, как и автономной системы, отличается сеть лишь размерами
Простой манометр имеет шкалу от 0 до 7, что позволяет установить его в квартире, частном доме.
Методы повышения давления в системе
Если давление в водопроводе низкое, то причина может заключаться в следующем.
- Вода в трубопроводе есть, но отсутствует напор.
- Вода в трубопроводе отсутствует на верхних этажах.
Для решения первой проблемы необходимо внедрить в систему насос, повышающий давление, для решения второй — установить накопительную станцию.
Прежде чем внедрять технические средства в систему водоснабжения, следует сначала проверить сеть на предмет засорения:
#1: Внедрение насоса для повышения давления
Если вода в трубопроводе присутствует, но нет напора, то устанавливают нагнетательный насос. Также устройство можно внедрить в случае, если нет напора в квартире с централизованным отоплением.
Причина отсутствия давления может заключаться в следующем:
- скважина располагается отдаленно дома;
- мощности базового насоса не хватает, чтобы обеспечить подачу воды на верхние этажи.
Насос обычно монтируют на входе в домашнюю трубопроводную сеть перед коллектором или первым тройником.
Существует один недостаток центральных насосов — они создают разряжение, то есть могут качать насыщенную воздухом воду. Обычный нагнетательный центробежным насос чувствителен к содержанию воздуха в жидкости, поэтому стоит отдать предпочтение вибрационным модификациям.
Водяной насос работает от электродвигателя. Внутренний элемент вращается, тем самым увеличивая давление в трубах.
Корпус прибора обычно выполнен из прочного пластика
Для установки прибора в многоквартирном доме важно выбрать модификацию верной мощности, иначе владелец «прокачанного» водопровода будет понижать давление в соседних квартирах. Рекомендуется ставить насос на трубу, ведущую к конкретному бытовому прибору.
В общем случае насос врезают в общую трубу, которая отвечает за подачу воды в квартиру или дом. Сам прибор довольно компактный и стоит недорого.
#2: Основные виды нагнетательных насосов
Существуют модели с сухим и мокрым ротором (проточные). Элементы насоса с мокрым ротором смазывает проходящая жидкость. Устройства этого класса не требуют дополнительного обслуживания, если изначально их подключить правильно.
Электрический насос, в отличие от вибрационного, устанавливается между водопроводом и источником воды
Хорошей мощностью обладает насос с сухим ротором, но он нуждается в регулярном обслуживании, выдает негромкие звуки при работе, напоминающие писк комара. Детали его ограждены водостойкой заслонкой, поэтому придется раз в месяц чистить прибор.
По типу работы насосы делятся на следующие виды:
- насос, повышающий давление в ручном режиме и имеющий ручное управление. Модель постоянно работает, автоматических переключателей не имеет. У прибора несложная понятная для простых обывателей конструкция; чаще всего устройство используется в системах «теплый пол»;
- автоматический насос – запускается лишь при включении крана или бытовых приборов. После их закрытия отключается.
Автоматический насос стоит дороже ручного, потребляет немного энергии, оперативно реагирует на изменения в давлении и сегодня является наиболее востребованным.
Выбрать нагнетательный насос довольно просто. Важно определить следующее:
- на горячую или холодную воду будет устанавливаться прибор;
- необходимый уровень напора — чем выше показатель, тем большим будет давление в системе.
Соответственно, чем выше напор, тем больше необходимо мощности и пропускной способности оборудования.
Не менее важно выбрать нагнетательный насос с учетом бренда, поскольку в случае поломки не каждая ремонтная служба возьмется приводить в порядок модель производства неизвестной фирмы. Самые известные и всеми признанные производители — Грундфос, Wilo, Sprut. Каждая фирма специализируется на выпуске разных модификаций прибора.
Насос Wilo PB-401SEA предназначен для повышения напора в водопроводных сетях жилищного хозяйства. Может устанавливаться как на всасывающий, так и на подающий участок
Например, Грундфос выпускают циркуляционные насосы небольшого объема, Wilo разрабатывают модели со встроенным гидроаккумулятором.
Чтобы подключить циркуляционный нагнетательный насос, нужно:
- Перекрыть воду на участке.
- Выпустить воду из трубопровода и системы в целом.
- Отрезать часть трубы, в которой будет производиться установка.
- Прикрепить фитинги и насадки на места стыков.
- Врезать оборудование в водопровод.
Также допустимо использовать полипропиленовый или резиновый шланг для упрощения монтажа. В современных циркуляционных насосах такие трубы идут в комплекте.
#3: Повышение давления накопительным баком
Когда в доме трубопроводы стоят без воды или в случае, если на нижнем этаже вода присутствует, а до верхних не доходит, необходимо приобретать накопительную насосную станцию. Также ее внедряют в систему тогда, когда сетевое давление меньше 0.2 бара, а расход меньше 2 л/м.
Любая насосная станция работает по одному принципу. Монтируют ее в точке сопряжения внешней или внутренней ветки домашней трубопроводной сети
Принцип ее работы следующий.
Насос закачивает жидкость в станцию (бак или гидроаккумулятор), который работает под давлением 1.5-2 бара. Вода поступает до момента, когда в баке появится напор в 1.5 или 2 бара.
Если станция оборудована гидроаккумуляторм, то создаваемое давление может быть на порядок выше. После генерации необходимого давления, насосная станция отключается автоматически.
В конструкцию накопительной станции внедрены специальные датчики давления. При падении напора до 1.5 бар главный насос включается, при возрастании до определенной отметки отключается.
Система с насосом и накопительным баком имеет множество узлов, что затрудняет ее самостоятельный монтаж. Чтобы оборудование работало правильно и бесперебойно, лучше обратиться к специалистам (+)
Насос в станции может быть одного из двух видов — центробежным или вибрационным.
По типу всасывания различают:
- конструкции со съемным эжектором – способны генерировать давление в 5 бар. Эжектор погружают в скважину, а сам бак может располагаться дома, поскольку при работе практически не шумит. Преимущественно используется станция в случаях, если источник воды располагается глубоко, а ее недостатком является чувствительность к механическим элементам – песку, грязи и др.
- оборудование со встроенным эжектором – подходит для неглубоких (до 8 метров) скважин и колодцев, эффективно работает в грязной воде, не чувствительно к попаданию воздуха, но отличается высоким уровнем шума, поэтому обычно его устанавливают в специальных пристройках.
Модели с накопительным баком отличаются экономичностью (запуск происходит при опустошении бака), но имеют множество недостатков – генерируют малый напор, обладают большими габаритами, а в конструкции может произойти разрыв, в результате чего помещение может затопить.
Станции с накопительным баком сегодня практически не используются. На замену им пришли модели с гидроаккумулятором. Они обладают небольшими размерами, не шумят при работе. Установить прибор можно в подвале, подсобке, отдельной пристройке. При этом минимизирован риск протечек. Но гидроаккумулятор имеет небольшой запас емкости (около 25 л) и его не устанавливают на скважинах с малым дебитом.
Насосные станции нередко используются в сложно-разветвленных и протяженных водопроводах в качестве повысительного оборудования, перекачивающего воду из накопительного бака в точкам водоразбора
Также разделяют станции на поверхностные (когда насос располагается на земле) и погружные (устройство погружается в воду), последние условно делятся на колодезные и скважинные.
Для повышения уровня напора воды в квартирном трубопроводе насосные станции не используют в силу особенностей конструкции и шума при работе.
Несмотря на свою внушительную стоимость, насосная станция имеет ряд неоспоримых преимуществ:
- возможно установить любое желаемое давление в доме, что позволит использовать любые сантехнические приборы, в том числе и те, которые требуют для функционирования высокого давления;
- подача воды будет бесперебойной даже в случае, если она отсутствует в центральной магистрали (благодаря наличию накопительного бака).
Существуют у системы недостатки — она громоздкая, занимает много места.
Важно верно определить объем накопительной емкости. Берут эту величину с учетом среднесуточной нормы расхода воды. Если семья состоит из 3-4 человек, то в сутки хватит примерно 500 л воды.
При расчетах также важно учитывать, что воду время от времени нужно обновлять, чтобы избежать возникновения бактерий.
Если воды в баке достаточно (или давление в системе падает), то автоматически запускается насос, который нагнетает необходимое давление в сети, а после достижения определенной отметки отключается
Важно своевременно и регулярно производить очистку накопительной емкости, поскольку в ней скапливаются болезнетворные бактерии. Препятствуют их размножению небольшие мешочки с техническим серебром, помещенные вовнутрь бака.
Следует помнить, что на переливной трубе не должно быть запорной арматуры. Если поплавковый клапан выйдет из строя, то через нее будет происходить отвод воды.
Также необходимо установить байпас, чтоб в случае поломки станции была возможность отключить систему без полного отключения водоснабжения.
Схема установки повысительного насоса. Как установить повысительный насос
Повысительный насос должен присутствовать в любой системе водоснабжения, особенно если речь идет о тех случаях, когда давление критически низкое или нет централизованной подачи воды.
Насос для нагнетания давления воды позволяет полноценно использовать бытовые приборы (стиральные и посудомоечные машинки) и вообще, полноценно использовать воду на верхних этажах высотных зданий.
Однако подобная техника пользуется большим спросом и в частном секторе, поскольку хорошее давление горячей воды улучшает эффективность отопительной системы. В этой статье мы рассмотрим все вопросы касательно выбора и установки повысительных насосов.
Виды повысительных насосов
Проблема слабого напора воды в кране знакома многим жильцам многоэтажек и частных домов. Это особенно заметно в зимнее время, когда на первых этажах к батареям невозможно прикоснуться, а в квартирах наверху они едва теплые, не говоря уже о горячей воде из крана.
А если в такой квартире установлена стиральная или посудомоечная машина, возникают проблемы с их работой – из-за низкого напора воды они просто не включаются. Выходов из подобной ситуации несколько – искать более удобное жилье или устанавливать повысительный насос для воды.
Естественно, второй вариант дешевле и практичнее, но прежде чем бежать в магазин за прибором, следует понимать, как он работает.
Насос нагнетает давление в водопроводной трубе, приближая его к комфортной норме – близко 4 атмосфер.
В большинстве случаев в многоэтажках этот показатель останавливается примерно на 1-1,5 атмосфер, поэтому неудивительно, что стиральная машина попросту отказывается включаться, ведь для ее работы необходимо давление минимум в 2 атмосферы.
Сегодня многие меняют громоздкие ванны на компактные и многофункциональные душевые кабины, а потом недоумевают, почему те не соответствуют заявленным характеристикам – им не хватает напора воды. Однако стремиться к чрезмерному повышению давления также не следует.
При показателе в 7 атмосфер трубы могут не выдержать, особенно если квартира находится в доме советской постройки. Достаточно создать ту самую норму в 4 атмосферы, чтобы в полной мере пользоваться всеми благами водопровода.
Разновидностей бытовых повысительных насосов очень много, и несведущему человеку будет трудно подобрать нужный вариант. Модели отличаются по способу управления, температуре воды и способу охлаждения.
Классификация по способу управления:
- Ручное – насос включают или выключают вручную, контролируя наличие воды в системе. Так, если в водопроводе есть вода, прибору будет стабильно ее качать, а при работе «в сухую» он может давать сбои или вовсе сломаться. В этом и состоит самый большой недостаток данной линейки – нужно постоянно следить за водой, чтобы насос не перегрелся.
- Автоматическое – включение и отключение насоса осуществляется автоматически за счет срабатывания специального датчика. По сути, этот датчик заменяет смотрителя – если воды в системе нет, он выключает насос, не позволяя ему перегреваться, и наоборот.
Повысительные насосы для водоснабжения следует подбирать в зависимости от того, какую воду вы хотите качать – холодную или горячую. Существуют насосы специально для холодной, горячей воды или смешанного типа (универсальные).
Нельзя использовать аппарат для повышения давления холодной воды для «горячих» труб, иначе он быстро выйдет из строя, поскольку его детали и покрытия не рассчитаны на подобную эксплуатацию.
Универсальные приборы тем и удобны, что их можно использовать для любых труб, но цена повысительного насоса такого типа будет выше, чем узкопрофильного.
Даже если насос качает холодную воду, он может перегреться, поэтому в каждом устройстве имеется своя система охлаждения. Одни модели охлаждаются за счет протекающей через них воды, но в этом случае есть риск перегрева при отсутствии воды в системе.
Есть и другой вариант – охлаждение «сухим ротором». Такие насосы имеют вал с лопастями, вращение которых обдувает мотор и остужает его.
Первые модели «на воде» работают практически бесшумно, но требуют постоянного контроля, вторые же издают сильный гул, зато более производительны.
Самовсасывающая насосная станция
Жить в городе очень удобно, но как показывает практика, так бывает далеко не всегда. Во многих домах старой постройки очень слабый напор воды, и жильцы квартир на верхних этажах редко могут похвастаться хорошим напором воды из крана или пышущими жаром батареями центрального отопления.
Многие решают эту проблему установкой самовсасывающей насосной станции. Принцип работы повысительного насоса прост: он накачивает воду в небольшой бачок, откуда та под заранее установленным давлением идет к душевой кабине, стиральной машинке, газовой колонке и другим водоразборным точкам.
Чтобы выставить нужное давление, необходимо воспользоваться специальным реле.
Когда насос закачивает воду в аккумулирующий бачок, аппарат отключается. Но вода в бачке то есть, поэтому ее можно использовать даже в том случае, если водопровод абсолютно пуст (отключили воду из-за аварии, например), что, согласитесь, очень удобно.
Прежде чем приобрести станцию, узнайте максимально возможный напор воды, который она способна выдать. К примеру, установка Grundfos JP Booster 6-24L рассчитана на максимальный напор в 48 м, а большой бак на 24 л позволит с комфортом переждать любую аварию или другое незапланированное отключение воды.
Как выбрать насос
Итак, мы уже выяснили, что насосы позволяют значительно улучшить жизнь городскому жителю, однако каким критериями следует руководствоваться при выборе?
Какие вопросы следует задать продавцу-консультанту в магазине:
- Какова мощность насоса – понятно, что чем мощнее прибор, тем лучше, но перегибать палку все же не стоит, особенно если в доме старые трубы. Сперва нужно измерить текущее давление воды в водопроводе (купить манометр), а уже потом устанавливать более высокие рамки. При определении мощности необходимо также учитывать количество кранов и водопроводной техники.
- Сильно ли шумит насос – мы уже выяснили, что насосы с «мокрым» охлаждением протекающей водой работают почти бесшумно, а с «сухим ротором» могут причинить дискомфорт жильцам.
- Подходит ли модель для сечения труб в вашей квартире – некоторые насосы рассчитаны на определенное сечение труб, поэтому нелишним будет измерить этот показатель перед выходом за покупками. Если вы установите насос с неподходящим сечением, он будет испытывать перегрузки, а напор воды не увеличится.
- На какую высоту следует поднять воду – если вы выберете слишком слабый насос, он просто не догонит воду до вашего этажа.
- Если установка будет проходить в маленьком помещении, размер насоса должен быть соответствующим.
- И последнее, на сто следует обратить внимание – репутация производителя продукции и наличие сертификата качества.
Практически все бытовые насосы отличаются компактностью, что позволяет без проблем разместить их на трубе в любой квартире или частном доме. При этом большинство моделей обеспечивают лишь несущественный рост давления, но обычно этого с головой хватает для улучшения работы техники и движения горячей воды в батареях.
Мы рассмотрим продукцию самых популярных производителей, представленную на отечественном рынке:
- Wilo PB-088 EA – небольшой насос для установки на трубе, способный качать как холодную, так и горячую воду (универсальный). Система охлаждения работает за счет протекающей через аппарат жидкости, поэтому уровень шума минимальный. Насос оснащен потоковым датчиком, который включает механизм в момент потребления воды. Способен работать в двух режимах: автоматическом и ручном, при этом имеет защиту от перегрева и работы « в сухую». Дает максимальный напор в 9,5 м, температурный диапазон от 0С до +60С, производительность составляет 2,1 м³/ч, диаметр соединения 15 мм. При этом модель потребляет совсем немного энергии – всего 0,09 кВт.
- Grundfos UPA 15-90 – компактные габариты и малый вес позволяет легко установить насос на трубопроводе в квартире. Устройство предназначено для работы с водой любой температуры, оснащено защитой от перегрева и работы « в сухую». Насос покрыт антикоррозийным составом, почти не шумит, имеет 3 режима: нерабочий (вода циркулирует в системе самостоятельно), принудительный (аппарат работает постоянно, и защита от сухого хода не активизируется), автоматический (насос включается самостоятельно при большом расходе воды от 90 до 120 л/ч). Максимальный напор насоса составляет 8 м, температурный диапазон от +2С до +60С, производительность 1,5 м³/ч, соединение диаметром 20 мм, потребление электроэнергии 0,12 кВт.
- Jemix W15GR-15 A – насос предназначен для поддержания оптимального давления воды в системе. Охлаждение осуществляется посредством «сухого ротора», то есть уровень шума выше, чем у перечисленных ранее моделях. Работает в двух режимах: ручной и автомат. Дает максимальный напор в 15 м при потреблении мощности в 0,12 кВт и производительности 1,5 м³/ч. Диаметр подключения составляет 15 мм.
Установка насоса
Место монтажа повысительных насосов очень важно и определяет эффективность их работы.
Потоковый датчик может сработать на включение только если через насос идет вода, поэтому для подачи воды на первый или второй этаж аппарат следует установить в подвале.
При этом полноценная работа возможно только в комплексной установке с еще одним насосом, который будет обеспечивать подъем жидкости по трубам.
Рабочая схема повысительного насоса проста для понимания и поможет правильно установить агрегат. Нагнетательное устройство необходимо монтировать на трубе перед водозаборными точками, чтобы при слабом напоре он мог включиться и снабдить водой всех потребителей.
Когда вы запускаете один из них (включаете стиральную машинку или открываете кран), вода движется, и потоковый датчик моментально реагирует на это движение, включая насос (обычно на это уходит не больше секунды).
Если же вы живете на 4-5 этаже и установите насос в подвале, то его мощности будет недостаточно, чтобы поднять воду на нужную высоту.
Схема подключения повысительного насоса:
- На трубе, к которой будет подключен насос, сделайте разметку в соответствии с длиной насоса и переходников.
- Перекройте воду в квартире.
- Обрежьте трубу по разметке.
- На обоих концах трубы сделайте внешнюю резьбу.
- Накрутите на трубы переходники с внутренней резьбой.
- Вкрутите в переходники фитинги, которые должны идти в комплекте с насосом. В процессе установки сверяйтесь с инструкцией к устройству и смотрите на стрелки, нарисованные на корпусе (они указывают направление потоков).
- Проведите трехжильный кабель к насосу от электрического щитка. Рекомендуется организовать дополнительную розетку недалеко от места установки, а сам насос подключить через отдельный УЗО.
- Проведите тестовое испытание насоса, уделяя особое внимание всем местам стыков – не должно быть ни намека на протекание. Для качественной герметизации намотайте на резьбу ФУМ-ленту или паклю.
Полезные советы
Как видите, схема установки повысительного насоса не так уж сложна, но чтобы сделать все правильно, нужно обладать минимальными слесарными навыками – уметь резать трубы и делать резьбу.
Чтобы насос прослужил вам долгие годы, при монтаже руководствуйтесь следующими правилами:
- Чтобы насос проработал подольше, желательно установить на входе механический фильтр. В городе вода довольно грязная, да и трубы преимущественно старые с многолетними отложениями на внутренних стенках, поэтому будет обидно, если случайно оторвавшийся с трубы кусочек твердого налета попадет в новый насос и испортит его.
- Устанавливайте насос в сухом отапливаемом помещении. Если температура опустится ниже нуля, вода внутри замерзнет, и аппарат выйдет из строя.
- Монтаж запорного крана должен происходить до точки установки насоса, чтобы при необходимости провести профилактические работы, перекрыв доступ воды.
- Любой, даже самый бесшумный насос, в процессе работы вибрирует, и эта вибрация со временем может нарушить устойчивость прибора – расшатать его. Так что привыкайте время от времени проверять прочность креплений и подтягивать их при необходимости.
Нагнетающий давление воды насос способен в разы повысить качество жизни в городской квартире или частном доме. Пусть для этого придется вложить немного средств и потратить немного времени, зато в первую же зиму вы ощутите разительные перемены – в комнатах станет теплее, а горячая вода будет течь из крана сразу же, а не после 5 минут ожидания.
Источник: http://kolodezman.ru/drugoe/kak-podnyat-vodu-na-vysotu-bez-elektricheskogo-nasosa.html
Самодельные насосы для воды без электричества
Как поднять воду на высоту без электрического насоса
В древние времена и эпоху средневековья перед людьми нередко стояла задача подъема воды на высоту. Она реализовывалась различными способами, которые может вспомнить любой домовладелец, оставленный на земельном участке на долгое время без электричества. В случае большой глубины источника водозабора и острой нужды в воде использование древних способов принесет определенную пользу в расширении кругозора, укреплении здоровья и получении дополнительных инженерно-строительных навыков.
Методы подъема воды без электронасоса
Если вы решаете, как поднять воду на высоту, без насоса вам не обойтись. Только для подъема придется использовать не электрические, а ручные самодельные устройства, для работы которых потребуется приложение мускульной силы или энергия текущего водного потока.
Архимедов винт
Изобретение винтового устройства для подачи воды на высоту с целью наполнения оросительных каналов было сделано Архимедом приблизительно в 250 году до нашей эры.
Рис.1 Принцип действия винтового насоса Архимеда
Устройство состоит из полого цилиндра, внутри которого вращается винт, при работе оно опускается в источник водозабора под углом. При вращении лопасти винта захватывают воду и винт поднимает ее вверх по трубе, в верхней точке труба заканчивается и вода выливается в емкость или оросительный канал.
В древние времена рабочее колесо вращали рабы или животные, в наше время с этим могут быть проблемы и придется дополнительно строить ветряное колесо для приведения винта во вращение или самостоятельно укреплять мускулатуру.
Рис.2 Разновидность колеса Архимеда – насос из трубки
Устройство является аналогом современных шнековых насосов, может иметь различные модификации: винт вращается вместе с цилиндром или имеет форму полой трубки, намотанной на шток.
Метод гидротарана Монгольфье
Механик Монгольфье в 1797 придумал устройство, названное гидравлическим тараном. В нем используется кинетическая энергия воды, текущей сверху вниз.
Рис. 3 Принцип действия гидроударного водяного насоса
Принцип действия устройства основан на том, что при резком перекрытии водного потока в жесткой трубе вода через обратный клапан под давлением вытесняется в расположенный вверху гидробак. В его нижней части располагается штуцер, на который одевается выходной шланг для воды, идущий к потребителю. Обратный клапан не дает возможности воде вытечь обратно — таким образом происходит постоянное циклическое наполнение бака и непрерывный подъем и подача воды.
Запорный клапан устройства работает автоматически, поэтому присутствие человека и организации его работы кроме установки оборудования не требуется.
Рис. 4 Внешний вид промышленного гидроударного насоса
Следует отметить, что подобные устройства нет необходимости делать самостоятельно, они выпускаются промышленным способом в небольших объемах.
Аэролифт
Родоначальником метода является немецкий горный инженер Карл Лошер, придумавший способ в 1797 году.
Аэролифт (эрлифт) — разновидность струйного насоса, для подъема воды используется воздух. Устройство представляет собой полую вертикальную трубу, опущенную в воду, к нижней части которой подключен шланг. При подаче через шланг в трубу воздуха под давлением, его пузырьки смешиваются с водой, и полученная пена вследствие легкой удельной массы подымается вверх.
Воздух можно подавать при помощи обычного ручного насоса через ниппель, препятствующий его выходу обратно.
Рис. 6 Автоматическая подача воды аэролифтом с использованием компрессора
Подобное устройство для подачи воды при отсутствии насоса довольно просто сделать своими руками и автоматизировать процесс, если имеется подающий воздух компрессор.
Подъем воды поршневым насосом
Можно сделать устройство для подачи воды на высоту методом всасывания при помощи поршня. Устройство представляет собой трубу с системой обратных клапанов, внутри цилиндрической поверхности которой движется поршень. При возвратном движении вода всасывается в корпус цилиндра, при поступательном перемещении поршня обратные клапаны закрываются и вода выталкивается наружу.
Рис. 8 Поршневая помпа в организации ручного водоснабжения.
Поршневой насос с длинной трубой для подъема воды с больших глубин держать в руках и качать воду — занятие для подготовленных культуристов, его удобнее приспособить для подъема воды из узкой скважины, закрепив на внешней колонке с ручкой.
Для быстрого подъема воды с небольших глубин из узких расщелин можно использовать простейшее промышленное устройство. Для этого берется ручная помпа для воды и на ее входной клапан одевается длинная пластиковая трубка. Самодельный насос опускается в воду длинным концом трубки и она качается при помощи многократных нажатий на кнопку помпы.
Рис. 9 Ручная помпа для подъема воды
Методы подъема воды без электронасоса малоэффективны и требуют серьезных затрат и усилий для изготовления работоспособного и удобного устройства, несопоставимых не только со стоимостью самого дешевого электронасоса, но и дорогих моделей. Их применение оправдано при проживании в районах с полным отсутствием электроэнергии, что можно отнести к экстремальным способам выживания.
Особенности водяных насосов без питания
Никогда не знаешь, где нам пригодятся знания по школьным предметам. Особенно по физике. Об этом устройстве, который построен на знаниях физике, и пойдет речь. Данный насос является исключительно следствием развития как человеческого прогресса, так и нестандартного мышления. Для работы ему не требуется ни электричество, ни топливо, даже не нужно что-то дополнительно делать. Но насос способен давать хорошее давление и поднимать высокие столбы воды, что многие, не разобравшись, называют обманом. А это далеко не так.
Изготовление водяного насоса
На первый взгляд, такой агрегат не вызывает доверия, ведь в нашем понимании насосы несколько больше и вообще другие. Но на самом деле, абсолютно все узлы данного агрегата являются работающими, причем не от какого – то топлива, а от обычных законов физики, что проходят в 8 классе. Дело тут в разнице давления, создаваемого внутри такого насоса. Клапана настроены таким образом, что при определенном давлении один открывается, другой закрывается. Это очень похоже на старый добрый насос ручной типа гармошки, где при давлении на действующий клапан, выходил воздух, а при его отдавании, на свободное место поступала вода.
В основном, такая конструкция изготавливается из труб (пеновинилхлоридовых). Имеет вид прямой трубы с клапанами, ревизиями и заглушками, которые вмонтированы на более широкий участок трубы. Сами трубы сажаются или на клей или спаиваются между собой при помощи специального оборудования.
Самое широкое в этой конструкции – буфер или ресивер, который необходим для выравнивания и накопления давления. По бокам расположены входные выпуски. Но стоит ли смотреть на другую сторону? Нет, они примерно одинаковые. Только с тем условием, что правый клапан является приточкой воды, а левый – выпускным.
Получается, поток воды подается на правый клапан. К слову, можно вместо клапанов использовать и обычные шаровые краны. После этого, вода идет на тройник. Тройник же разделяет потоки: один поток уходит на верх к клапану, при определенном давлении который закрывается, прямой же поток идет на тот клапан, который открывается при достижении необходимого давления. После этого идёт еще один тройник, но уже на ресивер, а после этого – на выход. Так же, желательно использовать манометр, который покажет давление в зависимости от места установки. Обычно ставят один манометр на приточку, но так же можно поставить и на отдающий клапан.
В общем, уяснили, что вода подается на шаровый кран справа. Далее идет на тройник. Тройник, разделяет потоки. Вверх подает к клапану, который закрывается при достаточном давлении. А прямой поток подается на клапан, который открывается при достижении нужного давления.
Затем, идет опять тройник на ресивер и уже на выход. А, ещё манометр, но его может и не быть, не столь важен.
Самодельные вариант без питания вполне можно изготовить своими руками. Если учитывать все наши рекомендации. В таком случае не обойтись без бензина.
Реальная польза
Фактически, это не совсем насос, а скорее усилитель напора. Это связанно с тем, что для его работы нужно определенное давление. Еще такой тип изделий называют «гидрофор», ведь и там и тут есть гидрозатвор, который открывает и закрывает клапан при достижении определенного давления. Ресивер должен всегда находится в вертикальном положении.
По некоторым испытаниям, насос спокойно забирает воду из ручьев и озер, но не с огромной скоростью. Для тех, кому приходится часто ходить на речку за водой, создание такого насоса вполне хорошее и основательное занятие.
Но лучше использовать такой насос не самостоятельно, а в паре с несколькими такими насосами: они не будут мешать друг другу, но количество воды будет гораздо большим.
Плюс можно их объединить на выходе в одну трубу водоподачи, но главное помнить: труба должна быть диаметром в два раза шире при наличии двух таких изделий. Это связано с тем, что может нарушится основной принцип работы такой конструкции и насосы перестанут нормально функционировать.
Принцип работы водяного насоса
Пусть это и кажется чем-то фантастическим и похоже на шутку, дело кроется тут в одном секрете. Второе название такого насоса «гидроударный», а работают они таким образом: вода идет по магистрали и как только давление повысится, клапан выходящий резко закроется, вода же по инерции пойдет дальше, то неминуемо произойдет гидроудар, который создаст большое и избыточное давление, которое будет способно открыть второй клапан. После этого вода попадет в ресивер, который и будет сжимать воздух.
Когда давление упадет, то выходящий клапан автоматически закроется и вода опять пойдет через средний и на верхний, после чего вода побежит на верх.
Виды насосов
Насосы бывают разные, в основном они работают от электричества, но встречаются и варианты работы на другом топливе, например, на дизельном. Насосы делятся на две группы: объемные и динамические. Объемные насосы имеют принцип действия такой, что жидкость попадает в рабочую камеру и вытесняется из неё. Они цикличны и герметичны, а так же обладают свойством самовсасывания. Динамические же насосы не имеют рабочей камеры. Еще различают насосы по реализации: механические, магниторазрядные, стрйные и криогенные. Так же различают насосы по мощности, по назначению. Но помимо этого есть и устройства для специальных работ, такие как насосы для химических жидкостей и фекальные насосы.
Химические насосы нужны для перекачки разных жидкостей, в основном агрессивных, с которыми не справятся обычные насосы. Зачастую, они имеют соответствующее покрытие. Основная области применения – нефтепромышленность и химическая промышленность. Часто можно встретить и на лакокрасочной промышленности.
Фекальные насосы же применяются для работы в загрязненных водах и жидкостях. Они отличаются от остальных тем, что рассчитаны на гораздо большую вязкость, нежели обычные, а так же спокойно справляются с небольшими средними частицами, в том числе и с песком, гравием. Фекальные насосы бывают как погружными, так и полупогружными.
О том, как сделать водяной насос без питания своими руками, смотрите в следующем видео.
Самодельный насос для откачки воды: подборка из 7-ми лучших вариантов
После приобретения земельного участка дачник начинает решать наиболее важные проблемы: нужно же с чего-то начинать, чтобы обжиться. Самое главное – это обеспечить себя водой. Действительно, с тех пор, как жизнь зародилась в воде, без неё всё живое долго не может существовать. Привозить воду откуда-то можно, но только для личных нужд. Проблему полива таким методом не решить. Хорошо, если вода есть хотя бы поблизости от участка. Устроит любой, даже небольшой, водоём: речка или хотя бы ручеек. Идеальным вариантом является родник, но так везёт редко. Осталось обзавестись насосом. Кстати, на первых порах подойдет самодельный насос для воды. Его использование снимет остроту проблемы.
Вариант #1 – американская речная помпа
Такая модель насоса, для работы которого не нужно электричество, может быть использована умельцами, которым повезло приобрести участок на берегу небольшой, но очень бурной речушки.
Шланг в бочку укладывается ровными витками без заломов и перегибов. И всё сооружение в целом выглядит довольно незатейливо, но вода с его помощью исправно поставляется на берег
Для создания насоса понадобится:
- бочка диаметром в 52см, длиной в 85см и весом примерно в 17 кг;
- шланг, накрученный в бочке, с диаметром в 12мм;
- выпускной (подающий) шланг 16мм в диаметре;
Есть ограничения и для среды погружения: рабочая глубина потока не должна быть менее 30см, скорость перемещения воды (течения) – 1,5 м/сек. Такой насос обеспечивает подъём воды на высоту не более 25 метров по вертикали.
Составляющие элементы: 1- выпускной шланг, 2- втулочная муфта, 3-лопасти, 4 –пенополистероловые поплавки, 5 – спиральная намотка шланга, 6 – входное отверстие, 7- дно конструкции. Бочка отлично держится на плаву
Подробности использования этого насоса можно рассмотреть на видео.
Вариант #2 – самодельный волновой насос
В работе этого насоса тоже используются преимущества, которые обеспечивает находящаяся поблизости от участка река. В водоёме без течения такой насос вряд ли будет эффективен. Чтобы его изготовить, потребуются:
- гофрированная труба типа «гармошка»;
- кронштейн;
- 2 втулки с клапанами;
- бревно.
Труба может быть как из пластика, так и из латуни. В зависимости от материала «гармошки» нужно корректировать и вес бревна. Латунной трубе будет соответствовать бревно весом более 60кг, а для пластиковой подойдет и не такой тяжелый груз. Как правило, вес бревна подбирают практическим путем.
Этот вариант насоса подойдет для речки и не с самым бурным течением, важно чтобы оно просто было, тогда «гармошка» будет сокращаться, а вода нагнетаться
Оба конца трубы закрывают втулками, имеющими клапана. С одной стороны труба крепится к кронштейну, с другой – к бревну, помещенному в воду. Работа устройства непосредственно зависит от перемещения воды в реке. Именно её колебательные движения должны заставлять «гармошку» действовать. Ожидаемый эффект при скорости ветра в 2м/сек и при возросшем давлении до 4-х атмосфер может составить примерно 25 тыс. литров воды в течение суток.
Как вы понимаете, насос представлен в упрощенном варианте. Его можно усовершенствовать, если исключить для бревна нежелательный крутящий момент. Для этого зафиксируем его в горизонтальной плоскости, установив на подъёмнике при помощи болта кольцевой ограничитель. Теперь насос прослужит дольше. Ещё один вариант улучшений: впаянные наконечники на концах трубы. Втулки на них можно просто навинчивать.
Особое внимание следует уделить и предварительной подготовке бревна. Не забываем, что оно будет помещено в воду. Готовим смесь из натуральной олифы и керосина из расчета один к одному. Само бревно пропитываем смесью 3-4 раза, а запилы и торцы, как наиболее гигроскопичные, шесть раз. Смесь в процессе работы может начать застывать. При прогревании на водяной бане она вернет текучесть без потери остальных свойств.
Вариант #3 – печь, создающая разницу давления
Умельцы, чья идея воплотилась в этом чуде инженерной мысли, назвали своё детище «печь-насос». Им, конечно, виднее, но на начальной стадии своей работы этот насос похож на самовар. Впрочем, воду он действительно не греет, а создаёт разницу в давлении, за счет чего и осуществляется его работа.
Для такого насоса необходимо:
- стальная бочка на 200 литров;
- примус или паяльная лампа;
- патрубок с краном;
- сетчатая насадка для шланга;
- шланг резиновый;
- дрель.
Патрубок с краном нужно врезать в нижнюю часть бочки. Сверху бочку закрыть резьбовой пробкой. В этой пробке предварительно просверливают отверстие и вставляют в него шланг из резины. Сетчатая насадка нужна для того, чтобы закрыть второй конец шланга перед тем, как него опускают в водоём.
Такой вариант насоса можно даже назвать остроумным и, что самое главное, этот «прибор» наверняка будет хорошо работать
В бочку наливают примерно два литра воды. Под бочку ставят нагревательный элемент (примус или паяльную лампу). Можно просто развести под днищем костер. Воздух в бочке нагревается и выходит по шлангу в водоём. Это будет заметно по бульканью. Огонь гасят, бочка начинает остывать, а из-за низкого внутреннего давления в неё нагнетается вода из водоёма.
Чтобы наполнить бочку, в среднем, нужно не менее часа. Это при условии диаметра отверстия в шланге в 14 мм и расстояния в 6 метров от места, откуда предстоит поднять воду.
Вариант #4 – черная решетка для солнечной погоды
Вот уж для этого изделия потребуются специальные приспособления. Откуда, например, у вас возьмется черная решетка, в полых трубках которой содержится сжиженный пропан-бутан? Впрочем, если эта часть задачи будет решена, остальное не вызывает особых затруднений. Итак, решетка есть, и она соединена с резиновой грушей (баллоном), которая помещена в бидон. В крышке этого бидона имеются два клапана. Один клапан впускает воздух внутрь ёмкости, а через другой воздух с давлением в 1атм выходит в воздуховод.
Решетку действительно лучше делать черного цвета, потому что черные изделия всегда активнее нагреваются под ярким летним солнцем
Работает система так. Поливаем в солнечный день решетку холодной водой. Пропан-бутан охлаждается, а давление газовых паров понижается. Баллон из резины сжимается, а в бидон поступает воздух. После того, как солнце высушит решетку, пары снова раздуют грушу, а воздух под давлением начнет поступать через клапан прямо в трубу. Воздушная пробка становится своеобразным поршнем, который выгоняет воду чрез душевую головку на решетку, после чего цикл повторяется.
Конечно, нас интересует не сам процесс поливания решетки, а та вода, которая собирается под ней. Специалисты утверждают, что насос прекрасно функционирует даже в зимнее время. Только на этот раз в качестве охладителя используется морозный воздух, а нагревает решетку вода, извлекаемая из-под земли.
Вариант #5 – нагнетатель из пластиковой бутылки
Если вода находится в бочке или другой ёмкости, то использовать в этом случае шланг для полива представляется проблематичным. На самом деле всё не так уж сложно. Можно буквально из подручных материалов сконструировать самодельный насос для откачки воды, который будет работать по принципу компенсации уровня жидкости в сообщающихся сосудах.
Нагнетание воды происходит в результате нескольких поступательных движений. Клапан, который размещается под крышкой, не позволяет воде вернуться в бочку, что вынуждает при увеличении её объёма, вытекать наружу. Несерьёзное, на первый взгляд, сооружение является основательным подспорьем в дачной работе.
Для ручного насоса необходимо:
- пластиковая бутылка, в крышке которой обязательно должна быть прокладка-мембрана из пластика;
- шланг, подходящий по длине;
- стандартная трубка, диаметр которой соответствует размеру горлышка бутылки.
Как именно можно собрать такой насос и как он будет функционировать, смотрите на видео, где всё подробно разъяснено.
Вариант #6 – деталь от стиральной машинки
Привычка покупать новые вещи, когда есть старые аналоги, очень разорительна. Соглашусь, что старая стиральная машинка уже не способна конкурировать с новыми моделями, но её насос ещё может послужить вам на славу. Например, с его помощью можно откачать воду из дренажного колодца.
Стиральная машинка давно отслужила своё. Её попросту вытеснили новые модели с новыми возможностями. Но её сердце – насос ещё способен послужить владельцу
Для двигателя такого насоса нужна сеть в 220В. Но лучше для его питания применить разделительный трансформатор с надежной изоляцией входной и выходной обмотки. Не забываем и про качественное заземление сердечника или металлического корпуса самого трансформатора. Соизмеряем мощность трансформатора и двигателя.
Мы используем центробежный тип насоса, поэтому ставим клапан на конце шланга, опущенного в воду, а систему заполняем водой. Обратный клапан, который в разобранном виде представлен на фото, тоже можно снять со стиральной машинки. А голубая притертая пробочка просто идеально подошла, чтобы лишнее отверстие тоже оказалось закрытым. Наверняка в ваших запасах найдется нечто подобное.
Буквально из мусора, как оказалось, можно собрать вполне функциональную вещь, которая не просто работает, а делает свою работу хорошо и быстро
Получившийся самодельный насос очень хорошо работает, откачивая с глубины примерно в 2 метра воду с приличной скоростью. Важно его вовремя отключать, чтобы воздух не попал в систему, и не пришлось её опять заполнять водой.
Вариант #7 – Архимед и Африка
Все прекрасно помнят историю про винт, изобретенный Архимедом. С его помощью осуществлялось водоснабжение ещё в древних Сиракузах, не знавших электричества. Очень остроумный вариант применения Архимедова винта придумали в Африке. Насос-карусель служит одновременно и развлечением для местной детворы, и вполне функциональным сооружением, обеспечивающим водой небольшое поселение. Если у вас есть дети, а у них – друзья, которые любят кататься на карусели, возьмите этот опыт себе на вооружение.
1– детская карусель, 2- насос, 3- пласт водоносный, 4- резервуар с водой, 5-колонка с водой, 6- возвращающая воду труба на случай переполнения резервуара
Как видите, возможностей для водоснабжения великое множество. И электричество в этом вопросе может вообще не участвовать. Оказалось, некоторые насосы для воды своими руками может сделать даже школьник. Важно, чтобы было желание, светлая голова и умелые руки. А идеи мы вам подкинем.
Особенности водяных насосов без питания
Никогда не знаешь, где нам пригодятся знания по школьным предметам. Особенно по физике. Об этом устройстве, который построен на знаниях физике, и пойдет речь. Данный насос является исключительно следствием развития как человеческого прогресса, так и нестандартного мышления. Для работы ему не требуется ни электричество, ни топливо, даже не нужно что-то дополнительно делать. Но насос способен давать хорошее давление и поднимать высокие столбы воды, что многие, не разобравшись, называют обманом. А это далеко не так.
Изготовление водяного насоса
На первый взгляд, такой агрегат не вызывает доверия, ведь в нашем понимании насосы несколько больше и вообще другие. Но на самом деле, абсолютно все узлы данного агрегата являются работающими, причем не от какого – то топлива, а от обычных законов физики, что проходят в 8 классе. Дело тут в разнице давления, создаваемого внутри такого насоса. Клапана настроены таким образом, что при определенном давлении один открывается, другой закрывается. Это очень похоже на старый добрый насос ручной типа гармошки, где при давлении на действующий клапан, выходил воздух, а при его отдавании, на свободное место поступала вода.
В основном, такая конструкция изготавливается из труб (пеновинилхлоридовых). Имеет вид прямой трубы с клапанами, ревизиями и заглушками, которые вмонтированы на более широкий участок трубы. Сами трубы сажаются или на клей или спаиваются между собой при помощи специального оборудования.
Самое широкое в этой конструкции – буфер или ресивер, который необходим для выравнивания и накопления давления. По бокам расположены входные выпуски. Но стоит ли смотреть на другую сторону? Нет, они примерно одинаковые. Только с тем условием, что правый клапан является приточкой воды, а левый – выпускным.
Получается, поток воды подается на правый клапан. К слову, можно вместо клапанов использовать и обычные шаровые краны. После этого, вода идет на тройник. Тройник же разделяет потоки: один поток уходит на верх к клапану, при определенном давлении который закрывается, прямой же поток идет на тот клапан, который открывается при достижении необходимого давления. После этого идёт еще один тройник, но уже на ресивер, а после этого – на выход. Так же, желательно использовать манометр, который покажет давление в зависимости от места установки. Обычно ставят один манометр на приточку, но так же можно поставить и на отдающий клапан.
В общем, уяснили, что вода подается на шаровый кран справа. Далее идет на тройник. Тройник, разделяет потоки. Вверх подает к клапану, который закрывается при достаточном давлении. А прямой поток подается на клапан, который открывается при достижении нужного давления.
Затем, идет опять тройник на ресивер и уже на выход. А, ещё манометр, но его может и не быть, не столь важен.
Самодельные вариант без питания вполне можно изготовить своими руками. Если учитывать все наши рекомендации. В таком случае не обойтись без бензина.
Реальная польза
Фактически, это не совсем насос, а скорее усилитель напора. Это связанно с тем, что для его работы нужно определенное давление. Еще такой тип изделий называют «гидрофор», ведь и там и тут есть гидрозатвор, который открывает и закрывает клапан при достижении определенного давления. Ресивер должен всегда находится в вертикальном положении.
По некоторым испытаниям, насос спокойно забирает воду из ручьев и озер, но не с огромной скоростью. Для тех, кому приходится часто ходить на речку за водой, создание такого насоса вполне хорошее и основательное занятие.
Но лучше использовать такой насос не самостоятельно, а в паре с несколькими такими насосами: они не будут мешать друг другу, но количество воды будет гораздо большим.
Плюс можно их объединить на выходе в одну трубу водоподачи, но главное помнить: труба должна быть диаметром в два раза шире при наличии двух таких изделий. Это связано с тем, что может нарушится основной принцип работы такой конструкции и насосы перестанут нормально функционировать.
Принцип работы водяного насоса
Пусть это и кажется чем-то фантастическим и похоже на шутку, дело кроется тут в одном секрете. Второе название такого насоса «гидроударный», а работают они таким образом: вода идет по магистрали и как только давление повысится, клапан выходящий резко закроется, вода же по инерции пойдет дальше, то неминуемо произойдет гидроудар, который создаст большое и избыточное давление, которое будет способно открыть второй клапан. После этого вода попадет в ресивер, который и будет сжимать воздух.
Когда давление упадет, то выходящий клапан автоматически закроется и вода опять пойдет через средний и на верхний, после чего вода побежит на верх.
Виды насосов
Насосы бывают разные, в основном они работают от электричества, но встречаются и варианты работы на другом топливе, например, на дизельном. Насосы делятся на две группы: объемные и динамические. Объемные насосы имеют принцип действия такой, что жидкость попадает в рабочую камеру и вытесняется из неё. Они цикличны и герметичны, а так же обладают свойством самовсасывания. Динамические же насосы не имеют рабочей камеры. Еще различают насосы по реализации: механические, магниторазрядные, стрйные и криогенные. Так же различают насосы по мощности, по назначению. Но помимо этого есть и устройства для специальных работ, такие как насосы для химических жидкостей и фекальные насосы.
Химические насосы нужны для перекачки разных жидкостей, в основном агрессивных, с которыми не справятся обычные насосы. Зачастую, они имеют соответствующее покрытие. Основная области применения – нефтепромышленность и химическая промышленность. Часто можно встретить и на лакокрасочной промышленности.
Фекальные насосы же применяются для работы в загрязненных водах и жидкостях. Они отличаются от остальных тем, что рассчитаны на гораздо большую вязкость, нежели обычные, а так же спокойно справляются с небольшими средними частицами, в том числе и с песком, гравием. Фекальные насосы бывают как погружными, так и полупогружными.
О том, как сделать водяной насос без питания своими руками, смотрите в следующем видео.
Самодельный насос для откачки воды: разбор 3-х вариантов, которые можно сделать своими руками
Как только документы на загородный участок оформлены, новоиспеченные дачники приступают к поискам воды. Хорошо, если вода на участке будет, а если её нет? Можно взять у соседей, но даже для приготовления ужина ведра два понадобится. На полив огорода уже не наносишь. Где в таком случае взять живительную влагу? Если осмотреться по сторонам, где-то обязательно найдётся озерцо или речушка, даже ручей подойдёт. Нужен только насос. И он не обязательно должен быть электрическим. Самодельный насос для воды может использовать солнечную энергию, вакуум или естественные колебания озера. Это и экономично, и никакой зависимости от напряжения в электросети.
Многие отдельно взятые участки не подключены к электросети. Сделанные своими руками насосы для воды могут использовать не только электричество. Они прекрасно работают на «бесплатной» энергии солнца и ветра, используют естественные колебания воды и речное течение. Качать воду можно даже с помощью вакуума, причём для этого нужна только бочка и костёр.
Волновой насос: собирается просто, качает эффективно
Для изготовления волнового насоса нужны:
- гофрированная труба (гармошка);
- две втулки с клапанами;
- кронштейн;
- бревно.
Если использовалась труба из латуни, то бревно должно весить больше шестидесяти килограмм. Хотя если использовать пластиковую гармошку, можно обойтись и более лёгким. В последнем случае вес бревна точно можно определить лишь на практике
Труба с обеих сторон закрывается втулками с клапанами. Один конец крепят к кронштейну, другой – к плавающему бревну. Естественные колебания воды в реке приведут гармошку в действие. Если скорость ветра достигает двух метров в секунду, то давление возрастает до четырёх атмосфер, и за сутки можно перекачать около двадцати пяти тысяч литров.
Волновой самодельный насос для откачки воды прослужит дольше, если болтом на подъёмнике закрепить кольцевой ограничитель. Так бревно в горизонтальной плоскости будет только немного поворачиваться. Это исключит нежелательный крутящий момент. Ещё можно в концы трубы впаять наконечники, на которые навинчиваются втулки.
Бревно, которое будет использовано в этой конструкции, нужно пропитать три-четыре раза смесью керосина и натуральной олифы в пропорции один к одному. Торцы и запилы нужно пропитать шесть раз. Если смесь начинает застывать, её нужно подогреть на водяной бане.
Печь-насос: греть – не греет, но воду качает исправно
Название системы многих вводит в заблуждение: подогрев воды печь-насос не обеспечивает. Принцип работы заключается в создании разницы давления. Чтобы собрать печь-насос, нужны:
- стальная двухсотлитровая бочка;
- паяльная лампа или примус;
- патрубок с краном;
- резиновый шланг;
- сетчатая насадка на шланг;
Как показывает опыт, чтобы наполнить бочку нужно около часа. И это при условии, что диаметр шланга миллиметров, а воду нужно поднять с шестиметровой глубины
В нижнюю часть бочки врезают патрубок с краном. В резьбовой пробке, которая сверху закрывает бочку, просверливают отверстие и очень плотно вставляют резиновый шланг. Его второй конец закрывают сетчатой насадкой, а затем опускают в водоём. Под бочкой устанавливают паяльную лампу или примус.
В бочку наливают 1-2 литра воды, а под её дном разводят костёр. Пар вытесняет воздух, который по шлангу попадает в водоём. Затем огонь тушат, бочка остывает. В результате давление внутри падает, и из водоёма начинает поступать вода.
Насос на солнечной энергии: работает всегда
В трубках решётки находится пропан-бутан. Соединена она с резиновой грушей, опущенной в бидон. В его крышке есть два клапана: один пропускает воздух внутрь, а другой выпускает его под давлением около 1 атм. в воздухопроводную трубу.
Чтобы запустить насос в действие, летом достаточно полить решётку холодной водой. Сжиженный пропан-бутан охлаждается, а давление его паров снижается. В результате резиновая груша сжимается, и бидон наполняется воздухом. Через несколько минут солнце высушит решётку и снова нагреет её. Пары жидкости раздуют грушу, в результате чего давление в бидоне увеличится, и воздух начнёт выходить через клапан в трубу. Воздушная пробка как поршень гонит перед собой воду к головке душа. Этот глоток воды попадает на решётку и снова её охлаждает.
В трубках, из которых собрана решётка, может находиться не только пропан-бутан. Подойдёт и любая другая жидкость, которая закипает при низкой температуре
Такая система работает даже зимой, правда, цикл «переворачивается»: морозный воздух охлаждает решётку, а подземная вода её нагревает.
Если участок находится на берегу озера или реки, то необязательно носить ведрами воду на полив огорода. Можно сделать насос из подручных материалов. Солнце и течение реки сделают всю работу сами.
Источник: http://valerie-flowers.ru/voda/samodelnye-nasosy-dlya-vody-bez-elektrichestva.html
02.05.2020
Дорожка из плитняка Что потребуется и сколько стоит 1 метр? Укладка плитняка имеет особенности и чтобы дорожка, заезд на участок или парковка из него прослужили долго, нужно правильно выбрать камень, соблюсти технологию мощения. Укладка плитняка считается простой, но... → |
02.05.2020
Создаем зону барбекю своими руками Владея загородным домом или дачей, просто непозволительно не иметь на участке зону, где можно приготовить любимый всеми шашлык или барбекю на тлеющих углях. Это место преобразит территорию и послужит для ежедневного вечернего отдыха за... → |
02.05.2020
Баня из газосиликатных блоков строительство и отделка на примере небольшой частной бани Правильное утепление бани из газосиликатного кирпича Облицовка стен сайдингом Давайте прежде всего определимся с терминами. В строительстве применяются два совершенно разных... → |
Комментирование отключено.
